Skip to main content

World timezone definitions, modern and historical

Project description

pytz - World Timezone Definitions for Python
============================================

:Author: Stuart Bishop <stuart@stuartbishop.net>

Introduction
~~~~~~~~~~~~

pytz brings the Olson tz database into Python. This library allows
accurate and cross platform timezone calculations using Python 2.4
or higher. It also solves the issue of ambiguous times at the end
of daylight savings, which you can read more about in the Python
Library Reference (``datetime.tzinfo``).

Almost all of the Olson timezones are supported.

.. note::

This library differs from the documented Python API for
tzinfo implementations; if you want to create local wallclock
times you need to use the ``localize()`` method documented in this
document. In addition, if you perform date arithmetic on local
times that cross DST boundaries, the result may be in an incorrect
timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get
2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A
``normalize()`` method is provided to correct this. Unfortunately these
issues cannot be resolved without modifying the Python datetime
implementation (see PEP-431).


Installation
~~~~~~~~~~~~

This package can either be installed from a .egg file using setuptools,
or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an
administrative user::

python setup.py install

If you are installing using setuptools, you don't even need to download
anything as the latest version will be downloaded for you
from the Python package index::

easy_install --upgrade pytz

If you already have the .egg file, you can use that too::

easy_install pytz-2008g-py2.6.egg


Example & Usage
~~~~~~~~~~~~~~~

Localized times and date arithmetic
-----------------------------------

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'

This library only supports two ways of building a localized time. The
first is to use the ``localize()`` method provided by the pytz library.
This is used to localize a naive datetime (datetime with no timezone
information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500

The second way of building a localized time is by converting an existing
localized time using the standard ``astimezone()`` method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'

Unfortunately using the tzinfo argument of the standard datetime
constructors ''does not work'' with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 AMT+0020'

It is safe for timezones without daylight savings trasitions though, such
as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'

The preferred way of dealing with times is to always work in UTC,
converting to localtime only when generating output to be read
by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'

This library also allows you to do date arithmetic using local
times, although it is more complicated than working in UTC as you
need to use the ``normalize()`` method to handle daylight savings time
and other timezone transitions. In this example, ``loc_dt`` is set
to the instant when daylight savings time ends in the US/Eastern
timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'

Creating local times is also tricky, and the reason why working with
local times is not recommended. Unfortunately, you cannot just pass
a ``tzinfo`` argument when constructing a datetime (see the next
section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

Converting between timezones also needs special attention. We also need
to use the ``normalize()`` method to ensure the conversion is correct.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 EST+1100'
>>> utc_dt2 = utc.normalize(au_dt.astimezone(utc))
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

You can take shortcuts when dealing with the UTC side of timezone
conversions. ``normalize()`` and ``localize()`` are not really
necessary when there are no daylight savings time transitions to
deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 EST+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'


``tzinfo`` API
--------------

The ``tzinfo`` instances returned by the ``timezone()`` function have
been extended to cope with ambiguous times by adding an ``is_dst``
parameter to the ``utcoffset()``, ``dst()`` && ``tzname()`` methods.

>>> tz = timezone('America/St_Johns')

>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)

The ``is_dst`` parameter is ignored for most timestamps. It is only used
during DST transition ambiguous periods to resulve that ambiguity.

>>> tz.utcoffset(normal, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=True)
'NDT'

>>> tz.utcoffset(ambiguous, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(ambiguous, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'

>>> tz.utcoffset(normal, is_dst=False)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'

>>> tz.utcoffset(ambiguous, is_dst=False)
datetime.timedelta(-1, 73800)
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'

If ``is_dst`` is not specified, ambiguous timestamps will raise
an ``pytz.exceptions.AmbiguousTimeError`` exception.

>>> tz.utcoffset(normal)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal)
'NDT'

>>> import pytz.exceptions
>>> try:
... tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00


Problems with Localtime
~~~~~~~~~~~~~~~~~~~~~~~

The major problem we have to deal with is that certain datetimes
may occur twice in a year. For example, in the US/Eastern timezone
on the last Sunday morning in October, the following sequence
happens:

- 01:00 EDT occurs
- 1 hour later, instead of 2:00am the clock is turned back 1 hour
and 01:00 happens again (this time 01:00 EST)

In fact, every instant between 01:00 and 02:00 occurs twice. This means
that if you try and create a time in the 'US/Eastern' timezone using
the standard datetime syntax, there is no way to specify if you meant
before of after the end-of-daylight-savings-time transition.

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00, tzinfo=eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

As you can see, the system has chosen one for you and there is a 50%
chance of it being out by one hour. For some applications, this does
not matter. However, if you are trying to schedule meetings with people
in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC. The pytz
package encourages using UTC for internal timezone representation by
including a special UTC implementation based on the standard Python
reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a
smaller size than other pytz tzinfo instances. The UTC implementation
can be obtained as pytz.utc, pytz.UTC, or pytz.timezone('UTC').

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True

Note that this instance is not the same instance (or implementation) as
other timezones with the same meaning (GMT, Greenwich, Universal, etc.).

>>> utc is pytz.timezone('GMT')
False

If you insist on working with local times, this library provides a
facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500

If you pass None as the is_dst flag to localize(), pytz will refuse to
guess and raise exceptions if you try to build ambiguous or non-existent
times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern
timezone when the clocks where put back at the end of Daylight Savings
Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00

Similarly, 2:30am on 7th April 2002 never happened at all in the
US/Eastern timezone, as the clocks where put forward at 2:00am skipping
the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
... print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00

Both of these exceptions share a common base class to make error handling
easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True

Although ``localize()`` handles many cases, it is still not possible
to handle all. In cases where countries change their timezone definitions,
cases like the end-of-daylight-savings-time occur with no way of resolving
the ambiguity. For example, in 1915 Warsaw switched from Warsaw time to
Central European time. So at the stroke of midnight on August 5th 1915
the clocks were wound back 24 minutes creating an ambiguous time period
that cannot be specified without referring to the timezone abbreviation
or the actual UTC offset. In this case midnight happened twice, neither
time during a daylight savings time period:

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> loc_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> loc_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> loc_dt2 = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> loc_dt2.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(loc_dt2 - loc_dt1)
'0:24:01'

The only way of creating a time during the missing 24 minutes is
converting from another timezone - because neither of the timezones
involved where in daylight savings mode the API simply provides no way
to express it:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'

The standard Python way of handling all these ambiguities is not to
handle them, such as demonstrated in this example using the US/Eastern
timezone definition from the Python documentation (Note that this
implementation only works for dates between 1987 and 2006 - it is
included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'

Notice the first two results? At first glance you might think they are
correct, but taking the UTC offset into account you find that they are
actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'


Country Information
~~~~~~~~~~~~~~~~~~~

A mechanism is provided to access the timezones commonly in use
for a particular country, looked up using the ISO 3166 country code.
It returns a list of strings that can be used to retrieve the relevant
tzinfo instance using ``pytz.timezone()``:

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham

The Olson database comes with a ISO 3166 country code to English country
name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand


What is UTC
~~~~~~~~~~~

'UTC' is Universal Time, also known as Greenwich Mean Time or GMT
in the United Kingdom. All other timezones are given as offsets from
UTC. No daylight savings time occurs in UTC, making it a useful timezone
to perform date arithmetic without worrying about the confusion and
ambiguities caused by daylight savings time transitions, your country
changing its timezone, or mobile computers that move roam through
multiple timezones.


Helpers
~~~~~~~

There are two lists of timezones provided.

``all_timezones`` is the exhaustive list of the timezone names that can
be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True

``common_timezones`` is a list of useful, current timezones. It doesn't
contain deprecated zones or historical zones, except for a few I've
deemed in common usage, such as US/Eastern (open a bug report if you
think other timezones are deserving of being included here). It is also
a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'US/Pacific-New' in all_timezones
True
>>> 'US/Pacific-New' in common_timezones
False

Both ``common_timezones`` and ``all_timezones`` are alphabetically
sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True

``all_timezones`` and ``common_timezones`` are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False

You can also retrieve lists of timezones used by particular countries
using the ``country_timezones()`` function. It requires an ISO-3166
two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich


License
~~~~~~~

MIT license.

This code is also available as part of Zope 3 under the Zope Public
License, Version 2.1 (ZPL).

I'm happy to relicense this code if necessary for inclusion in other
open source projects.


Latest Versions
~~~~~~~~~~~~~~~

This package will be updated after releases of the Olson timezone
database. The latest version can be downloaded from the `Python Package
Index <http://pypi.python.org/pypi/pytz/>`_. The code that is used
to generate this distribution is hosted on launchpad.net and available
using the `Bazaar version control system <http://bazaar-vcs.org>`_
using::

bzr branch lp:pytz

Announcements of new releases are made on
`Launchpad <https://launchpad.net/pytz>`_, and the
`Atom feed <http://feeds.launchpad.net/pytz/announcements.atom>`_
hosted there.


Bugs, Feature Requests & Patches
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Bugs can be reported using `Launchpad <https://bugs.launchpad.net/pytz>`_.


Issues & Limitations
~~~~~~~~~~~~~~~~~~~~

- Offsets from UTC are rounded to the nearest whole minute, so timezones
such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This
is a limitation of the Python datetime library.

- If you think a timezone definition is incorrect, I probably can't fix
it. pytz is a direct translation of the Olson timezone database, and
changes to the timezone definitions need to be made to this source.
If you find errors they should be reported to the time zone mailing
list, linked from http://www.iana.org/time-zones.


Further Reading
~~~~~~~~~~~~~~~

More info than you want to know about timezones:
http://www.twinsun.com/tz/tz-link.htm


Contact
~~~~~~~

Stuart Bishop <stuart@stuartbishop.net>

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pytz-2013.9.zip (485.2 kB view details)

Uploaded Source

pytz-2013.9.tar.gz (274.0 kB view details)

Uploaded Source

pytz-2013.9.tar.bz2 (159.7 kB view details)

Uploaded Source

Built Distributions

pytz-2013.9-py3.3.egg (470.9 kB view details)

Uploaded Egg

pytz-2013.9-py3.2.egg (470.1 kB view details)

Uploaded Egg

pytz-2013.9-py2.7.egg (469.9 kB view details)

Uploaded Egg

pytz-2013.9-py2.6.egg (470.1 kB view details)

Uploaded Egg

pytz-2013.9-py2.5.egg (470.1 kB view details)

Uploaded Egg

pytz-2013.9-py2.4.egg (470.6 kB view details)

Uploaded Egg

File details

Details for the file pytz-2013.9.zip.

File metadata

  • Download URL: pytz-2013.9.zip
  • Upload date:
  • Size: 485.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9.zip
Algorithm Hash digest
SHA256 079dfb38a30493a40c7f3c9058867aa6266c2cde8fb087672b6322aa7e517e7e
MD5 66a84e470e0a44cceec9d52badec92b6
BLAKE2b-256 5be9f75adac924f57b155e363f81d4e97bd89533cd67aa6e44c1061e5811ab77

See more details on using hashes here.

File details

Details for the file pytz-2013.9.tar.gz.

File metadata

  • Download URL: pytz-2013.9.tar.gz
  • Upload date:
  • Size: 274.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9.tar.gz
Algorithm Hash digest
SHA256 c43945b6eeeedc01a99d9e59d68eb66c35b908fcfec768c4f888148e4fe670c4
MD5 3c039d3540bddb4e99ad2c3b4a8f92aa
BLAKE2b-256 57014d6808253c2afb30b7c26e82f5e1ab8e7a5403e5ce490b6cdfb57fc4ece4

See more details on using hashes here.

File details

Details for the file pytz-2013.9.tar.bz2.

File metadata

  • Download URL: pytz-2013.9.tar.bz2
  • Upload date:
  • Size: 159.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9.tar.bz2
Algorithm Hash digest
SHA256 4252226fa20e0715d4dcd05f9233f0076c44bca30e4f1793b2fe03cdfb422ed4
MD5 ec7076947a46a8a3cb33cbf2983a562c
BLAKE2b-256 fc3a6ec4d1ddab0face099eeae7e77d8f319b19448e3b3c6b652828a3c158528

See more details on using hashes here.

File details

Details for the file pytz-2013.9-py3.3.egg.

File metadata

  • Download URL: pytz-2013.9-py3.3.egg
  • Upload date:
  • Size: 470.9 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9-py3.3.egg
Algorithm Hash digest
SHA256 5b0451f5b734559606e4f6628d0015d212bfb28d8545f210f8d5e8f6cd8da5c2
MD5 51a69306b04739059dab836d09f19628
BLAKE2b-256 0c49c422fede69d7e7ed1c04e4341de3413233056d05127458f2c99028edb4bd

See more details on using hashes here.

File details

Details for the file pytz-2013.9-py3.2.egg.

File metadata

  • Download URL: pytz-2013.9-py3.2.egg
  • Upload date:
  • Size: 470.1 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9-py3.2.egg
Algorithm Hash digest
SHA256 83f143d6d4772401ab18c86079c4ae72c6042bd3f7c1b8561c564ff61ba3b00c
MD5 5ac948b065b7d3a7d3178843b99b5cb2
BLAKE2b-256 6a8eebe663d918c1b58f7ea0b1a6d5ec6630ef6919419a385d74503a82788196

See more details on using hashes here.

File details

Details for the file pytz-2013.9-py2.7.egg.

File metadata

  • Download URL: pytz-2013.9-py2.7.egg
  • Upload date:
  • Size: 469.9 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9-py2.7.egg
Algorithm Hash digest
SHA256 1b236c716e739a688be06046e608015358702b429be0a2b09b367cc421d6b407
MD5 789f11f89336eec4acd5eb11b389159c
BLAKE2b-256 dddf2df248f1cb1e02be536755a2c1f25faf19fe818140668cbc4be76fb77fda

See more details on using hashes here.

File details

Details for the file pytz-2013.9-py2.6.egg.

File metadata

  • Download URL: pytz-2013.9-py2.6.egg
  • Upload date:
  • Size: 470.1 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9-py2.6.egg
Algorithm Hash digest
SHA256 89300adbb341c1e2ee9df5008e674974abed23655852bf348be0efb8e3910aa9
MD5 ec1ebc3809f28a5f776a9d16bc5fcf14
BLAKE2b-256 db130838cadde6ba29e1c6f6f92d6bac57fdd1b1545e904b7c14c58cdf217126

See more details on using hashes here.

File details

Details for the file pytz-2013.9-py2.5.egg.

File metadata

  • Download URL: pytz-2013.9-py2.5.egg
  • Upload date:
  • Size: 470.1 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9-py2.5.egg
Algorithm Hash digest
SHA256 7d7d7d7ac723a626bab186e45c41116b23e9f7c9f6820b604787b19cb637dc4c
MD5 5b329a321c916809be59123dddbc4c72
BLAKE2b-256 a7838e6d898ab5244c02df227f0287751ca4003911dac55fdc40aa9e3bcd2735

See more details on using hashes here.

File details

Details for the file pytz-2013.9-py2.4.egg.

File metadata

  • Download URL: pytz-2013.9-py2.4.egg
  • Upload date:
  • Size: 470.6 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pytz-2013.9-py2.4.egg
Algorithm Hash digest
SHA256 0fe23b7e2c08247453b9e60bed48a2176bd39098d739ea1749e6ae961f5d000c
MD5 e9fe1a4786550ac7a02334503614cb56
BLAKE2b-256 71bd5cf4707808f4859709eaa7ab7b2f1b25cb97791fcbc5f0ef1c1ca6db8c3f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page