Skip to main content

UFF (Universal File Format) read/write.

Project description

Universal File Format read and write

This module defines an UFF class to manipulate with the UFF (Universal File Format) files.

Read from and write of data-set types 15, 55, 58, 58b, 82, 151, 164, 2411, 2412, 2414, 2420 are supported.

Check out the documentation.

To install the package, run:

pip install pyuff

Showcase

To analyse UFF file we first load the uff module and example file:

import pyuff
uff_file = pyuff.UFF('data/beam.uff')

To check which datasets are written in the file use:

uff_file.get_set_types()

Reading from the UFF file

To load all datasets from the UFF file to data object use:

data = uff_file.read_sets()

The first dataset 58 contains following keys:

data[4].keys()

Most important keys are x: x-axis and data: y-axis that define the stored response:

plt.semilogy(data[4]['x'], np.abs(data[4]['data']))
plt.xlabel('Frequency  [Hz]')
plt.ylabel('FRF Magnitude [dB m/N]')
plt.xlim([0,1000])
plt.show()

Writing measurement data to UFF file

Loading the accelerance data:

measurement_point_1 = np.genfromtxt('data/meas_point_1.txt', dtype=complex)
measurement_point_2 = np.genfromtxt('data/meas_point_2.txt', dtype=complex)
measurement_point_3 = np.genfromtxt('data/meas_point_3.txt', dtype=complex)
measurement_point_1[0] = np.nan*(1+1.j)
measurement = [measurement_point_1, measurement_point_2, measurement_point_3]

Creating the UFF file where we add dataset 58 for measurement consisting of the dictionary-like keys containing the measurement data and the information about the measurement:

for i in range(3):
    print('Adding point {:}'.format(i + 1))
    response_node = 1
    response_direction = 1
    reference_node = i + 1
    reference_direction = 1
    acceleration_complex = measurement[i]
    frequency = np.arange(0, 1001)
    name = 'TestCase'
    data = {'type':58,
            'func_type': 4,
            'rsp_node': response_node,
            'rsp_dir': response_direction,
            'ref_dir': reference_direction,
            'ref_node': reference_node,
            'data': acceleration_complex,
            'x': frequency,
            'id1': 'id1',
            'rsp_ent_name': name,
            'ref_ent_name': name,
            'abscissa_spacing':1,
            'abscissa_spec_data_type':18,
            'ordinate_spec_data_type':12,
            'orddenom_spec_data_type':13}
    uffwrite = pyuff.UFF('./data/measurement.uff')
    uffwrite._write_set(data,'add')

Or we can use support function prepare_58 to prepare the dictionary for creating the UFF file. Functions for other datasets can be found in supported datasets.

for i in range(3):
print('Adding point {:}'.format(i + 1))
response_node = 1
response_direction = 1
reference_node = i + 1
reference_direction = 1
acceleration_complex = measurement[i]
frequency = np.arange(0, 1001)
name = 'TestCase'
pyuff.prepare_58(func_type=4,
            rsp_node=response_node,
            rsp_dir=response_direction,
            ref_dir=reference_direction,
            ref_node=reference_node,
            data=acceleration_complex,
            x=frequency,
            id1='id1',
            rsp_ent_name=name,
            ref_ent_name=name,
            abscissa_spacing=1,
            abscissa_spec_data_type=18,
            ordinate_spec_data_type=12,
            orddenom_spec_data_type=13)

travis

binder to test the pyuff Showcase.ipynb online.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyuff-2.0.tar.gz (30.6 kB view hashes)

Uploaded Source

Built Distribution

pyuff-2.0-py3-none-any.whl (56.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page