Skip to main content

VGram tokenization

Project description

PyPI version License: MIT

pyvgram

🍺 Python implementation on vgram tokenization

VGram is a tokenizer construction algorithm that optimizes the code length of the text. It can be used to tokenize text like BPE (Sennrich et al., 2016).

Read more in our CIKM'18 paper Construction of Efficient V-Gram Dictionary for Sequential Data Analysis.

Install

pip install pyvgram

Examples

1. Quickstart

Let's train tokenizer with size 10000 on file.txt content and encodes some string.

from vgram import VGramTokenizer

tokenizer = VGramTokenizer(10000)
tokenizer.train("file.txt")
ids = tokenizer.encode("hello world")

train method used for train from file name or list of names. For learning from string use fit method.

2. Save and load

from vgram import VGramTokenizer

tokenizer = VGramTokenizer(10000)
tokenizer.train(["file1.txt", "file2.txt"])
ids1 = tokenizer.encode("hello world")

tokenizer.save_pretrained("vgram.tokenizer")
loaded_tokenizer = VGramTokenizer.from_pretrained("vgram.tokenizer")
ids2 = loaded_tokenizer.encode("hello world")

assert tokenizer == loaded_tokenizer
assert ids1 == ids2

3. Learn from raw text

You can learn a tokenizer from raw text by fit method by passing string or list of strings.

from vgram import VGramTokenizer

tokenizer = VGramTokenizer(10000)
tokenizer.fit(" ".join(["hello world"] * 1000))
ids = tokenizer.encode("hello world")

Also, you can specify iters number if you want to learn more. Bootstrap sampling is used in case of list of stings.

from vgram import VGramTokenizer

tokenizer = VGramTokenizer(10000)
tokenizer.fit("hello world", iters=1000))
ids = tokenizer.encode("hello world")

4. Learn multiple times

You can learn a tokenizer on one dataset and then finetune on another by multiple calls of fit or train methods.

from vgram import VGramTokenizer, SplitLevel

tokenizer = VGramTokenizer(200, split_level=SplitLevel.NONE)
tokenizer.fit(["hello", "hello world"], iters=10000))
assert len(tokenizer.encode("hello world")) == 1
assert len(tokenizer.encode("pip install pyvgram")) > 1

tokenizer.fit("pip install pyvgram", iters=10000))
assert len(tokenizer.encode("hello world")) > 1
assert len(tokenizer.encode("pip install pyvgram")) == 1

After finetuning tokenizer.encode("hello world") codes by symbols into ['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
because in finetune dataset it's not meaningful sequence.

5. Vocabulary

from vgram import VGramTokenizer, SplitLevel

tokenizer = VGramTokenizer(10000, split_level=SplitLevel.LINE)
tokenizer.fit(" ".join(["hello world"] * 1000))
print("Vocabulary:", tokenizer.get_vocab())
# Vocabulary: ['h', 'hello world', 'e', 'l', 'o', ' ', 'w', 'r', 'd', '\n']
print("Vocab size:", tokenizer.vocab_size())
# Vocab size: 10

6. Learn with another split-level

The most of bpe-like tokenization libraries split one word to the pieces. pyvgram support different levels of splitting, so you can split whole line in to pieces which consist of few words if they are frequent enough. It's useful for analyzing vocabulary to find patterns in data.

Default split-level is WORD, but you can also use LINE and NONE.

from vgram import VGramTokenizer, SplitLevel

text = "\n".join(["hello world"] * 10000)

tokenizer = VGramTokenizer(200, split_level=SplitLevel.WORD)
tokenizer.fit(text)
print(tokenizer.get_vocab())
# ['h', 'hello', 'e', 'l', 'o', ' ', ' world', 'w', 'r', 'd', '\n']

tokenizer = VGramTokenizer(200, split_level=SplitLevel.LINE)
tokenizer.fit(text)
print(tokenizer.get_vocab())
# ['h', 'hello world', 'e', 'l', 'o', ' ', 'w', 'r', 'd', '\n']

SplitLevel.NONE not split text and handle it like one sequence. Its bad idea to pass very few texts in such case, but if you have many pre-splited texts, it's a good choice

from vgram import VGramTokenizer, SplitLevel

texts = ["hello world"] * 10000

tokenizer = VGramTokenizer(200, split_level=SplitLevel.NONE)
tokenizer.fit(texts)
print(tokenizer.get_vocab())
# ['h', 'hello world', 'e', 'l', 'o', ' ', 'w', 'r', 'd']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyvgram-0.1.1.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

pyvgram-0.1.1-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file pyvgram-0.1.1.tar.gz.

File metadata

  • Download URL: pyvgram-0.1.1.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for pyvgram-0.1.1.tar.gz
Algorithm Hash digest
SHA256 dadda240d42ceac0c3ac94770a83d46443d7a5bb95fd0e6117da16bae4d7bc41
MD5 fff2180c72cf070a426f7b297531a39c
BLAKE2b-256 684e2123951ecfd8be9a8332ae8de8e34f9bdf08d891177947d5f7184f3f5cec

See more details on using hashes here.

File details

Details for the file pyvgram-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: pyvgram-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for pyvgram-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ff0f8d5603fa489939497664186f699ca15640a08f384fdbb40ecf0013454c01
MD5 782767c4fe34762710f344307a749e7d
BLAKE2b-256 59a4374dadf81cce5c4385d84992560821752f959edd4d0f8c7322a3cd21e63c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page