Skip to main content

An AI-powered open-source medical image analysis toolbox

Project description

Voxel

License GitHub Workflow Status codecov Documentation Status

Documentation | Installation | Basic Usage

Voxel provides fast Pythonic data structures and tools for wrangling with medical images.

Installation

Voxel requires Python 3.7+. The core module depends on numpy, nibabel, pydicom, requests, and tqdm.

To install Voxel, run:

pip install pyvoxel

Features

Simplified, Efficient I/O

Voxel provides efficient readers for DICOM and NIfTI formats built on nibabel and pydicom. Multi-slice DICOM data can be loaded in parallel with multiple workers and structured into the appropriate 3D volume(s). For example, multi-echo and dynamic contrast-enhanced (DCE) MRI scans have multiple volumes acquired at different echo times and trigger times, respectively. These can be loaded into multiple volumes with ease:

import voxel as vx

xray = vx.load("path/to/xray.dcm")
ct_scan = vx.load("path/to/ct/folder/")

multi_echo_scan = vx.load("/path/to/multi-echo/scan", group_by="EchoNumbers")
dce_scan = vx.load("/path/to/dce/scan", group_by="TriggerTime")

Data-Embedded Medical Images

Voxel's MedicalVolume data structure supports array-like operations (arithmetic, slicing, etc.) on medical images while preserving spatial attributes and accompanying metadata. This structure supports NumPy interoperability intelligent reformatting, fast low-level computations, and native GPU support. For example, given MedicalVolumes mv_a and mv_b we can do the following:

# Reformat image into Superior->Inferior, Anterior->Posterior, Left->Right directions.
mv_a = mv_a.reformat(("SI", "AP", "LR"))

# Get and set metadata
study_description = mv_a.get_metadata("StudyDescription")
mv_a.set_metadata("StudyDescription", "A sample study")

# Perform NumPy operations like you would on image data.
rss = np.sqrt(mv_a**2 + mv_b**2)

# Move to GPU 0 for CuPy operations
mv_gpu = mv_a.to(vx.Device(0))

# Take slices. Metadata will be sliced appropriately.
mv_subvolume = mv_a[10:20, 10:20, 4:6]

Easily Prepare Data for AI Pipelines

Voxel enables you to preprocess DICOM images for deep learning in a few lines of code:

# Load a scan, and prepare it for AI/visualization
mv = (
  vx.load("/dicoms")
  .apply_rescale()
  .apply_window()
  .to_grayscale()
)

# Zero-copy to PyTorch
arr = mv.to_torch()

Connect with PACS

Voxel provides easy access to data stored in a PACS environment through DICOMweb. This makes loading data from a remote server just as easy as using the local filesystem.

# Download an MRI from a local Orthanc instance
mv = vx.load("http://localhost:8042/dicom-web/studies/x/series/y", params={"Modality": "MR"})

# Re-use the session for multiple requests
with vx.HttpReader(verbose=True) as hr:
  mv_a = hr.load("http://localhost:8042/dicom-web/studies/v/series/w")
  mv_b = hr.load("http://localhost:8042/dicom-web/studies/x/series/y")

Contribute

If you would like to contribute to Voxel, we recommend you clone the repository and install Voxel with pip in editable mode.

git clone git@github.com:pyvoxel/pyvoxel.git
cd pyvoxel
pip install -e '.[dev,docs]'
make dev

To run tests, build documentation and contribute, run

make autoformat test build-docs

Citation

Voxel is a refactored version of the DOSMA package that focuses on medical image data structures and I/O. If you use Voxel in your research, please cite the following work:

@inproceedings{desai2019dosma,
  title={DOSMA: A deep-learning, open-source framework for musculoskeletal MRI analysis},
  author={Desai, Arjun D and Barbieri, Marco and Mazzoli, Valentina and Rubin, Elka and Black, Marianne S and Watkins, Lauren E and Gold, Garry E and Hargreaves, Brian A and Chaudhari, Akshay S},
  booktitle={Proc 27th Annual Meeting ISMRM, Montreal},
  pages={1135},
  year={2019}
}

In addition to Voxel, please also consider citing the work that introduced the method used for analysis.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyvoxel-0.0.2.tar.gz (69.9 kB view details)

Uploaded Source

Built Distribution

pyvoxel-0.0.2-py2.py3-none-any.whl (65.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyvoxel-0.0.2.tar.gz.

File metadata

  • Download URL: pyvoxel-0.0.2.tar.gz
  • Upload date:
  • Size: 69.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyvoxel-0.0.2.tar.gz
Algorithm Hash digest
SHA256 20867ae9ae15cd35b9ce269d14d03d13827b1fecddecea0d327dcc5809c64681
MD5 5fe30f8c9c05c4d2bec757ef12289383
BLAKE2b-256 1885c07d5d21c85a6d4e918a5211375f14df23f22e9878f6ee7d787bb4d95e1d

See more details on using hashes here.

File details

Details for the file pyvoxel-0.0.2-py2.py3-none-any.whl.

File metadata

  • Download URL: pyvoxel-0.0.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 65.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyvoxel-0.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e5b4f5f2a0ababaf70abda2d9c0c807a508792d4228617910dd880b8df25069e
MD5 f592a8899a028e6aed0a6bfd7c9fcaf4
BLAKE2b-256 89ed48d9ea590b39f10cd565f72c4140ed0d0a5091400bcfc09744291598bd02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page