The VPMR Algorithm
Project description
VPMR C++ Implementation
Call For Help
- more performant parallel SVD algorithm:
eigen
only provides sequential SVD - alternative integration: currently only Gauss-Legendre quadrature is available
What Is This?
This is a C++ implementation of the VPMR algorithm to compute the approximation of arbitrary smooth kernel. A Python package is also provided.
Check the reference paper 10.1007/s10915-022-01999-1 and the original MATLAB implementation for more details.
In short, the algorithm tries to find a summation of exponentials to approximate a given kernel function. In mathematical terms, it looks for a set of $m_j$ and $s_j$ such that
$$ \max_{t\in{}I}\left|g(t)-\sum_jm_j\exp(-s_jt)\right|<\epsilon. $$
In the above, $g(t)$ is the given kernel function and $\epsilon$ is the prescribed tolerance.
Dependency
The following libraries are required:
- gmp for multiple precision arithmetic
- mpfr for multiple-precision floating-point computations
- tbb for parallel computing
The following libraries are included:
- mpreal
mpreal
type C++ wrapper, included - BigInt
BigInt
arbitrary large integer for combinatorial number, included - Eigen for matrix decomposition, included
- exprtk for expression parsing, included
- exprtk-custom-types for
mpreal
support, included
How To
Python Package
[!WARNING] The Python module needs external libraries to be installed.
[!WARNING] Windows users need to have a working MSYS2 environment. See below for more details. For other environments, you need to figure out how to install
gmp
andmpfr
on your own.
On RPM-based Linux distributions (using dnf
), if you are:
- compiling the application from source (or wheels are not
available),
sudo dnf install -y gcc-c++ tbb-devel mpfr-devel gmp-devel
- using the packaged binary (wheels are available),
sudo dnf install -y gmp mpfr tbb
On DEB-based Linux distributions (using apt
), you need to sudo apt install -y libtbb-dev libmpfr-dev libgmp-dev
.
On macOS, you need to brew install tbb mpfr gmp
.
Then install the package with pip
.
pip install pyvpmr
If the corresponding wheel is not available, the package will be compiled, which takes a few minutes.
The execution of the algorithm always requires available gmp
, mpfr
and tbb
libraries.
Jumpstart
import numpy as np
from pyvpmr import vpmr, plot
def kernel(x):
return np.exp(-x ** 2 / 4)
if __name__ == '__main__':
m, s = vpmr(n=50, k='exp(-t^2/4)')
plot(m, s, kernel)
Compile Binary
[!WARNING] The application relies on
eigen
andexprtk
, which depend on very heavy usage of templates. The compilation would take minutes and around 2 GB memory. You need to install librariesgmp
,mpfr
andtbb
before compiling.
Docker
To avoid the hassle of installing dependencies, you can use the provided Dockerfile
.
For example,
wget -q https://raw.githubusercontent.com/TLCFEM/vpmr/master/Dockerfile
docker build -t vpmr -f Dockerfile .
Or you simply pull using the following command.
docker pull tlcfem/vpmr
Windows
Use the following instructions based on MSYS2, or follow the Linux instructions below with WSL.
# install necessary packages
pacman -S git mingw-w64-x86_64-cmake mingw-w64-x86_64-tbb mingw-w64-x86_64-gcc mingw-w64-x86_64-ninja mingw-w64-x86_64-gmp mingw-w64-x86_64-mpfr
# clone the repository
git clone --depth 1 https://github.com/TLCFEM/vpmr.git
# initialise submodules
cd vpmr
git submodule update --init --recursive
# apply patch to enable parallel evaluation of some loops in SVD
cd eigen && git apply --ignore-space-change --ignore-whitespace ../patch_size.patch && cd ..
# configure and compile
cmake -G Ninja -DCMAKE_BUILD_TYPE=Release .
ninja
Linux
The following is based on Fedora.
sudo dnf install gcc g++ gfortran cmake git -y
sudo dnf install tbb-devel mpfr-devel gmp-devel -y
git clone --depth 1 https://github.com/TLCFEM/vpmr.git
cd vpmr
git submodule update --init --recursive
cd eigen && git apply --ignore-space-change --ignore-whitespace ../patch_size.patch && cd ..
cmake -DCMAKE_BUILD_TYPE=Release .
make
Usage
All available options are:
Usage: vpmr [options]
Options:
-n, --max-terms <int> number of terms (default: 10)
-c, --max-exponent <int> maximum exponent (default: 4)
-d, --precision-bits <int> number of precision bits (default: 512)
-q, --quadrature-order <int> quadrature order (default: 500)
-m, --precision-multiplier <float> precision multiplier (default: 1.5)
-e, --tolerance <float> tolerance (default: 1E-8)
-k, --kernel <string> file name of kernel function (default uses: exp(-t^2/4))
-s, --singular-values print singular values
-w, --weights print weights
-h, --help print this help message
The minimum required precision can be estimated by the parameter $n$. The algorithm involves the computation of $C(4n,k)$ and $2^{4n}$. The number of precision bits shall be at least $4n+\log_2C(4n,2n)$. In the implementation, this number will be further multiplied by the parameter $m$.
Example
The default kernel is exp(-t^2/4)
. One can run the application with the following command:
./vpmr -n 30
The output is:
Using the following parameters:
terms = 30.
exponent = 4.
precision = 355.
quad. order = 500.
multiplier = 1.5000e+00.
tolerance = 1.0000e-08.
kernel = exp(-t*t/4).
[1/6] Computing weights... [60/60]
[2/6] Solving Lyapunov equation...
[3/6] Solving SVD...
[4/6] Transforming (P=+9)...
[5/6] Solving eigen decomposition...
[6/6] Done.
M =
+1.1745193571738943e+01+6.4089561283054790e-107j
-5.5143304351134397e+00+5.7204056791636839e+00j
-5.5143304351134397e+00-5.7204056791636839e+00j
-1.6161617424833762e-02+2.3459542440459513e+00j
-1.6161617424833762e-02-2.3459542440459513e+00j
+1.6338578576177487e-01+1.9308431539218418e-01j
+1.6338578576177487e-01-1.9308431539218418e-01j
-5.4905134221689715e-03+2.2104939243740062e-03j
-5.4905134221689715e-03-2.2104939243740062e-03j
S =
+1.8757961592204051e+00-0.0000000000000000e+00j
+1.8700580506914817e+00+6.2013413918954552e-01j
+1.8700580506914817e+00-6.2013413918954552e-01j
+1.8521958553280000e+00-1.2601975249082220e+00j
+1.8521958553280000e+00+1.2601975249082220e+00j
+1.8197653300065935e+00+1.9494562062795735e+00j
+1.8197653300065935e+00-1.9494562062795735e+00j
+1.7655956664692953e+00-2.7555720406099038e+00j
+1.7655956664692953e+00+2.7555720406099038e+00j
Running time: 3112 ms.
Arbitrary Kernel
For arbitrary kernel, it is necessary to provide the kernel function in a text file.
The file should contain the kernel expressed as a function of variable t
.
The exprtk
is used to parse the expression and compute the value.
The provided kernel function must be valid and supported by exprtk
.
For example, to compute the approximation of exp(-t^2/10)
, one can create a file kernel.txt
with the following
content:
exp(-t*t/10)
In the following, the kernel function is echoed to a file and then used as an input to the application.
echo "exp(-t*t/10)" > kernel.txt
./vpmr -n 60 -k kernel.txt -e 1e-12
Binary
The binary requires available gmp
, mpfr
and tbb
libraries.
❯ ldd vpmr
linux-vdso.so.1 (0x00007ffcf3121000)
libgmp.so.10 => /lib64/libgmp.so.10 (0x00007f72087e8000)
libmpfr.so.6 => /lib64/libmpfr.so.6 (0x00007f7208736000)
libtbb.so.2 => /lib64/libtbb.so.2 (0x00007f72086f2000)
libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007f7208400000)
libm.so.6 => /lib64/libm.so.6 (0x00007f7208320000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f72086d0000)
libc.so.6 => /lib64/libc.so.6 (0x00007f7208143000)
/lib64/ld-linux-x86-64.so.2 (0x00007f72088a1000)
The distributed appimage
is portable.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file pyvpmr-240921.tar.gz
.
File metadata
- Download URL: pyvpmr-240921.tar.gz
- Upload date:
- Size: 2.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a9177ed7a7bf2d9cef47974046f6f7690c750c9d660a5c60e26c8642532c644 |
|
MD5 | ba4b8f977ca703c9b2bebb2f067a63ca |
|
BLAKE2b-256 | 3034a0a96416309347257410028f878435570ab00ae2537ed5b74b75e889aa1b |
File details
Details for the file pyvpmr-240921-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pyvpmr-240921-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0b8dc395adccfe75e34d11de8388e17bbb6d783b94c4a1f956ea77d53507bc0 |
|
MD5 | abd9b2a6492dfbaf57e1131b5d109a2b |
|
BLAKE2b-256 | 4a2b37d9543f26aebd8f0b2a5aebccab1cb2afa0eca33d69706d1f3b30b69dba |
File details
Details for the file pyvpmr-240921-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pyvpmr-240921-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e053b8cbb89ff3198f0e527a60a3fae0675ae83f0551bf7886942ba1869aff1a |
|
MD5 | ca0e1907b92179b67706e4344a21bea8 |
|
BLAKE2b-256 | 913300d81e029fd98c306e367d95030b2eb1d2de5b76f9561e0a43a8632d96a3 |
File details
Details for the file pyvpmr-240921-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pyvpmr-240921-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2431839dd775152ff62650640e4c84111d5020c34435c3b597fa42ff67ffd503 |
|
MD5 | 1f686eac49428edc4864b77e4b8cb97a |
|
BLAKE2b-256 | f5f4b88f52189a2fd6a5c925e15b7e99b62467925fbd750b50536bb8121d085f |
File details
Details for the file pyvpmr-240921-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pyvpmr-240921-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67f4a03f62d14b7a59e8e1405a401ecd5ab3205d7df587dc26b6b8c6ca8c573f |
|
MD5 | 8f30a21f3383c1ff3dda05681b6079c2 |
|
BLAKE2b-256 | d9492df9f7cdb70ec6335b7c4cf559f92ac2c16565bf63459b8a27faa6560733 |
File details
Details for the file pyvpmr-240921-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pyvpmr-240921-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | baacaef90f2d438b65b4b287bf48ea39b04725a4608a648c43eb95b62ff56b3c |
|
MD5 | 5f3170e9492cc6b3b23713ebe503d12c |
|
BLAKE2b-256 | 4e161912774bf567bd3c585f5ad31f41dc581c525ba48d75f662f57c68460a9d |
File details
Details for the file pyvpmr-240921-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pyvpmr-240921-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 3.2 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b40a3989cce0ab36e674419ca66ef530495f11ef629911dae8e90fdeaf92f4e |
|
MD5 | c9105b15b62674477d4d835ea2997c2b |
|
BLAKE2b-256 | 993f2fe388add6aa3a704897289612186a72a7f82d95251f33c28f65dec8baab |