Skip to main content

Python wrapper for VQNET

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyvqnet-2.14.0-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyvqnet-2.14.0-cp310-cp310-macosx_13_0_arm64.whl (15.7 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

pyvqnet-2.14.0-cp39-none-manylinux1_x86_64.whl (91.2 MB view details)

Uploaded CPython 3.9

pyvqnet-2.14.0-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyvqnet-2.14.0-cp39-cp39-macosx_13_0_arm64.whl (15.1 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

pyvqnet-2.14.0-cp38-none-manylinux1_x86_64.whl (147.5 MB view details)

Uploaded CPython 3.8

pyvqnet-2.14.0-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyvqnet-2.14.0-cp38-cp38-macosx_13_0_arm64.whl (15.1 MB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

File details

Details for the file pyvqnet-2.14.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyvqnet-2.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b22bda20e6cbf4e88bd62a0da078a084e342b86cecaf98d01cee0575b2808fce
MD5 4b7c5228bb5b55cccb7737f3e7078edb
BLAKE2b-256 dfe138173159c3bac8a8b4b528ebf6b6955a8a41d6099462ed5e3271eba6fd80

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyvqnet-2.14.0-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 4a6337ba7214107503a3eab01f5a2c1dded1dfcde6a11d6bf63e356e012d54ed
MD5 a59cb61f820184266c0b299480e5b03c
BLAKE2b-256 a63be9021baf63f5877113d77f04cf6f37c4acc6088ccf3fa2501b10825bd539

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp39-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyvqnet-2.14.0-cp39-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5318c5ea51d326be2bc14e0679446f075cdbb403d1a495a7e64632beaf43fb9c
MD5 254e079742169c04c088d1bd8613d5bd
BLAKE2b-256 7b1ce85272e3572204b4bbd7aa5265b52a95c56451ab150723d6dc27e7516180

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyvqnet-2.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.0

File hashes

Hashes for pyvqnet-2.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 09bd2dd1cbb88258808ff7e051a851dde034b96eb8dd8066e97593dc8b718dfd
MD5 32fcdab4a6f087d1a289673b0e7d6040
BLAKE2b-256 46b850273baec1169564080de24fdb1cd5d56ecce113e29dedfeff5292cd8c4f

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyvqnet-2.14.0-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 eb0fc03d1f6468bca32509fe25394ffdd2679bcfd84b58eaed1418494d81b450
MD5 7a0e00d8a55e841910123cabd808e322
BLAKE2b-256 5a81cdf3fb131c4a0286b3dc7705b4040c853660475d0ec02719a47f44cc4249

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp38-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyvqnet-2.14.0-cp38-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 73a1bda05b28e06b1bff5f4bcc56cc67059867cd871bbab029bf01777a393048
MD5 653878bb84c48843afd49c63eb5e7f4a
BLAKE2b-256 beac396a882bc4018264e760df90c18670058f2e612426917b4dfe192be25972

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyvqnet-2.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.0

File hashes

Hashes for pyvqnet-2.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 29940f852ba37589a098e2d2eea385f581712221ef1d6bbf1fa0e3abfbe2b34a
MD5 51f1f0c3ae89417d8cd1f62ecbf7ddd4
BLAKE2b-256 3822740a7060564b8c4cb10ce51066705bf0817d9a05703080de2c9844a06eb9

See more details on using hashes here.

File details

Details for the file pyvqnet-2.14.0-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyvqnet-2.14.0-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 fd32e820843a807e6514bccd5d7d13053a26c3fb5866f66e3b71ad3475bb090e
MD5 9afdd593fc226320b8585f09a16610c1
BLAKE2b-256 4a43bc7fbf8afddedbd097828457d52fe325c7bb71cdb3fdf2fc6407ce604ed3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page