Python API to work with the Visual Wake Words Dataset.
Project description
Visual Wake Words Dataset
Python library to work with the Visual Wake Words Dataset, comparable to pycococools for the COCO dataset.
pyvww.utils.VisualWakeWords
inherits from pycocotools.coco.COCO
and can be used in an similar fashion.
pyvww.pytorch.VisualWakeWordsClassification
is a pytorch Dataset
which can be used like any
image classification dataset.
Installation
The code is implemented in Python 3.7 and can be installed with pip:
pip install pyvww
Usage
The Visual Wake Words Dataset is derived from the publicly available COCO dataset.
To download the COCO dataset use the script download_coco.sh
bash scripts/download_mscoco.sh path-to-COCO-dataset year
Where year
is an optional argument that can be either 2014 (default) or 2017.
The Visual Wake Words Dataset evaluates the accuracy on the minival image ids, and for training uses the remaining 115k images of the COCO training/validation dataset.
To create COCO annotation files that converts the 2014 or 2017 split to the minival split use:
scripts/create_coco_train_minival_split.py
TRAIN_ANNOTATIONS_FILE="path-to-mscoco-dataset/annotations/instances_train2014.json"
VAL_ANNOTATIONS_FILE="path-to-mscoco-dataset/annotations/instances_val2014.json"
DIR="path-to-mscoco-dataset/annotations/"
python scripts/create_coco_train_minival_split.py \
--train_annotations_file="${TRAIN_ANNOTATIONS_FILE}" \
--val_annotations_file="${VAL_ANNOTATIONS_FILE}" \
--output_dir="${DIR}"
(2014 can be replaced by 2017 if you downloaded the 2017 dataset)
The process of creating the Visual Wake Words dataset from COCO dataset is as follows. Each image is assigned a label 1 or 0. The label 1 is assigned as long as it has at least one bounding box corresponding to the object of interest (e.g. person) with the box area greater than a certain threshold (e.g. 0.5% of the image area).
To generate the new annotations, use the script scripts/create_visualwakewords_annotations.py
.
MAXITRAIN_ANNOTATIONS_FILE="path-to-mscoco-dataset/annotations/instances_maxitrain.json"
MINIVAL_ANNOTATIONS_FILE="path-to-mscoco-dataset/annotations/instances_minival.json"
VWW_OUTPUT_DIR="new-path-to-visualwakewords-dataset/annotations/"
python scripts/create_visualwakewords_annotations.py \
--train_annotations_file="${MAXITRAIN_ANNOTATIONS_FILE}" \
--val_annotations_file="${MINIVAL_ANNOTATIONS_FILE}" \
--output_dir="${VWW_OUTPUT_DIR}" \
--threshold=0.005 \
--foreground_class='person'
The generated annotations follow the COCO Data format.
{
"info" : info,
"images" : [image],
"annotations" : [annotation],
"licenses" : [license],
}
info{
"year" : int,
"version" : str,
"description" : str,
"url" : str,
}
image{
"id" : int,
"width" : int,
"height" : int,
"file_name" : str,
"license" : int,
"flickr_url" : str,
"coco_url" : str,
"date_captured" : datetime,
}
license{
"id" : int,
"name" : str,
"url" : str,
}
annotation{
"id" : int,
"image_id" : int,
"category_id" : int,
"area" : float,
"bbox" : [x,y,width,height],
"iscrowd" : 0 or 1,
}
Pytorch Dataset
The pyvww.pytorch.VisualWakeWordsClassification
can be used in pytorch like any other pytorch image classification
dataset such as MNIST or ImageNet.
import torch
import pyvww
train_dataset = pyvww.pytorch.VisualWakeWordsClassification(root="path-to-mscoco-dataset/all",
annFile=".../visualwakewords/annotations/instances_train.json")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyvww-0.1.1.tar.gz
.
File metadata
- Download URL: pyvww-0.1.1.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d4b9d3cf2c0ffed130c659c933fdb01278f2b0affd47818b971846e7736aa56 |
|
MD5 | e561016cec189fecad88a1a8fad9d01b |
|
BLAKE2b-256 | e78ae1c8cf7e6f35c051d4de9c3b2285582bc7f81d882a55b5288332340a15c9 |
File details
Details for the file pyvww-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: pyvww-0.1.1-py3-none-any.whl
- Upload date:
- Size: 8.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb721e3d5f73d176f6262e7c04c1d12fb92aa3fa8f95c2b5a9a3c77bd0662eca |
|
MD5 | 22e592f5b559925c5ddf11ceb9dc37bd |
|
BLAKE2b-256 | b3ab1bf6a32048b845bd84e445413279c36fd0716d65cbab848d3deb1abca5a2 |