Skip to main content

pywasher

Project description

General Information

Pywasher will make it easier to clean data and prepare it for analysis.

import pywasher

If you wish to use this cleaner locally for testing purposes you can install it using:

pip install pywasher as pw

Now the interface is accessible in your code by prefixing with 'pw'.

Exposed Classes

In this section all the available functions of the module will be described.

Column based

explore_datatypes

The explore_datatypes function returns the index, datatype, columnname and datatype given by pandas for each column in the dataframe. The difference between the datatype and the datatype by pandas is that the datatype is ignore the datatype of empty values and gives a more general datatype (string, number, datetime, boolean, list)

df.pw.explore_datatypes

column_merge

The column_merge function merges all the given columns. It adds the values of the column if the first column is empty. If delete is True the columns that will be added will be deleted.

df.pw.column_merge([columns], delete = False)

column_to_numeric

The numbering checks if all the values in the given columns can be converted to an float or integer. If this is possible it will convert every value in the column to an int or float. If the force value is True it will change every cell it cant convert to numbers to NA It returns an dataframe in which the values of the given columns are made into numbers.

df.pw.column_to_numeric([columns], force = False)

explore_column_names

The explore_column_names functions shows how the column names will be changed if they will be send towards the Clappform database

df.pw.explore_columnnames

replace_double_column_names

The explore_column_names function adds numbers to the columnnames of columnnames which are multiple times in the dataframe

df.pw.replace_double_column_names

sorting

The sorting function changes the order of the columns to an alphabetic order

df.pw.sorting()

explore_double

The explore_double function shows all the double columns in a dataframe

df.pw.explore_double()

cleaning

The cleaning functions cleans the dataframe. It removes double spaces, replaces spaces with underscores in the columns and makes sure the column names are valid variable names for Javascript

df.pw.cleaning()

Cell based

list_splitter

The list_splitter function returns a dataframe in which all the values of the chosen columns are given a column. These columns consist of True or False based on the values in the chosen columns. The input is an list with all the names of the columns which need to be split, the output is a modified dataframe

df.pw.list_splitter([columns])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywasher-1.3.1.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

pywasher-1.3.1-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file pywasher-1.3.1.tar.gz.

File metadata

  • Download URL: pywasher-1.3.1.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for pywasher-1.3.1.tar.gz
Algorithm Hash digest
SHA256 40771932007d1e60b91e189403d9322da3e25486d4e7ddfbfd5356c54c56c868
MD5 ed99f3170ad4355eedaa6ddeaf23302c
BLAKE2b-256 08624404edd370af7b1cf07309f1563d5d8b69357003796c6d95193a4bd9381f

See more details on using hashes here.

File details

Details for the file pywasher-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: pywasher-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 7.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for pywasher-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 79494ed127b2985ed70bf6a307acbc8ab20fe155ceb65cfdfe7897d6c24dc7d1
MD5 0e7fbd7498a62fa52a2c5eb1641aacd7
BLAKE2b-256 6f47239ad93c73d7f618ff27e2c5bf85fadd07d65b492dfe0ed6cb6f5f777dfc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page