Physics-inspired waterflood performance modeling
Project description
pywaterflood
: Waterflood Connectivity Analysis
pywaterflood
provides tools for capacitance resistance modeling, a
physics-inspired model for estimating well connectivity between injectors and
producers or producers and other producers. It is useful for analyzing and
optimizing waterfloods, CO2 floods, and geothermal projects.
Overview
A literature review has been written by Holanda, Gildin, Jensen, Lake and Kabir, entitled "A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting." They describe CRM as the following:
The Capacitance Resistance Model (CRM) is a fast way for modeling and simulating gas and waterflooding recovery processes, making it a useful tool for improving flood management in real-time. CRM is an input-output and material balance-based model, and requires only injection and production history, which are the most readily available data gathered throughout the production life of a reservoir.
There are several CRM versions (see Holanda et al., 2018). Through passing different parameters when creating the CRM instance, you can choose between CRMIP, where a unique time constant is used for each injector-producer pair, and CRMP, where a unique time constant is used for each producer. CRMIP is more reliable given sufficient data. With CRMP, you can reduce the number of unknowns, which is useful if available production data is limited.
Getting started
You can install this package from PyPI with the line
pip install pywaterflood
Or from conda/mamba with
conda install -c conda-forge pywaterflood
Then, read the docs to learn more. If you want to try it out online before installing it on your computer, you can run this google colab notebook.
A simple example
import pandas as pd
from pywaterflood import CRM
gh_url = "https://raw.githubusercontent.com/frank1010111/pywaterflood/master/testing/data/"
prod = pd.read_csv(gh_url + 'production.csv', header=None).values
inj = pd.read_csv(gh_url + "injection.csv", header=None).values
time = pd.read_csv(gh_url + "time.csv", header=None).values[:,0]
crm = CRM(tau_selection='per-pair', constraints='up-to one')
crm.fit(prod, inj, time)
q_hat = crm.predict()
residuals = crm.residual()
Contributing
Contributions are extremely welcome! Have an issue to report? Want to offer new features or documentation? Check out the contribution guide to help you set up. Discussions could start anytime at the discussions section.
pywaterflood
uses Rust for computation and python as the high level interface.
Luckily, maturin is a very convenient tool for working
with mixed Python-Rust projects.
License
This software library is released under a BSD 2-Clause License.
Acknowledgments
Capacitance resistance modeling would not have caught on without the persistence of two professors: Larry Lake and Jerry Jensen. Both of these gentlemen generously helped answer questions in the development of this library. Research funding for this project came from the Department of Energy grant "Optimizing Sweep based on Geochemical and Reservoir Characterization of the Residual Oil Zone of Hess Seminole Unit" (PI: Ian Duncan) and the State of Texas Advanced Resource Recovery program (PI: William Ambrose). Further development is supported by Penn State faculty promotion funds and volunteer time.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file pywaterflood-0.3.2.tar.gz
.
File metadata
- Download URL: pywaterflood-0.3.2.tar.gz
- Upload date:
- Size: 789.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3fdb08ac1a5209375aa09b468b3405914d733711797d9efa3d9bfe9cff6426a2 |
|
MD5 | 6ee99447b38d0e6da96fc090bb2407bd |
|
BLAKE2b-256 | 1978886ce2d6badb81f2dedb103de3029537880b539a6d532b2daf4ae58abfd3 |
File details
Details for the file pywaterflood-0.3.2-pp310-pypy310_pp73-win_amd64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp310-pypy310_pp73-win_amd64.whl
- Upload date:
- Size: 153.4 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 631e835a7b3302fed14f78d9122f641d63610f8fb57dcb2324847fbace79e066 |
|
MD5 | 642ad6d65df8dff6bc879c9c6ef39497 |
|
BLAKE2b-256 | ef902a60442786bb1c026a27b186cbf9af12772d6435bd7fc8d6c0b2170cebc5 |
File details
Details for the file pywaterflood-0.3.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c9baa7e8400a2f85f1d425f3d75f94ed771ed635fcdf9d559ae5a6bd7513e14 |
|
MD5 | bb83c3664aaea89a183a0ecbe0f20302 |
|
BLAKE2b-256 | 84b4075e3031f4e5a60a0d26c12135770be2d2602f098753d7234c6384ce35b2 |
File details
Details for the file pywaterflood-0.3.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40327f9acbe9152b51c20e5ccd20a1c89d964b5f0a0e4e3c1baac12388e8d391 |
|
MD5 | 81fc1d7df106ddf4bedadcdfd9057347 |
|
BLAKE2b-256 | 6864a59aec999efe7cb9b37993021e51ef7c0b6713bd3a5df23f8ac0fb197d36 |
File details
Details for the file pywaterflood-0.3.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 283.3 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b83c68933d021a44cd8df7049f8be2324f94a2cce4557b2824213c5f138941a0 |
|
MD5 | 5a4c7bbff8e6a26a57888d1cbfa1438d |
|
BLAKE2b-256 | 50d66c0bae05e322f88885ddd39c95a4ea64024254b630aab1945a24be7824f5 |
File details
Details for the file pywaterflood-0.3.2-pp39-pypy39_pp73-win_amd64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp39-pypy39_pp73-win_amd64.whl
- Upload date:
- Size: 153.4 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2f6a0e6730c7e68fbb144e75d2fa4b748ea79614f1c4922217c148576e33c58 |
|
MD5 | d833861fc71dc3528ead9daef5d47512 |
|
BLAKE2b-256 | 05270f12f23a097b183bf680fd2cc93cfbe2e12cd89eae9450aedf1dd7399f6f |
File details
Details for the file pywaterflood-0.3.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 75c1a950b9cf390fbccefe5ba91b4914b8057504927bbbd1dfc9f384dece0464 |
|
MD5 | 8e1058d041e91bdcb5d2ded9eefc3d4b |
|
BLAKE2b-256 | c5e2630efebf7e7ceb064e03be85a8125c9016dbc2ae99ed130b4edcc3f6b716 |
File details
Details for the file pywaterflood-0.3.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5822f2361912469474d69027f02b413673ad2a9209692639398ec9137f3bf75 |
|
MD5 | 7efcfd61e484a6608cbd3d0c4a9d447d |
|
BLAKE2b-256 | 3e035fabbc59ec939e2b8c9076db7ce637ab47424e82554b11008d73e1e4d1d5 |
File details
Details for the file pywaterflood-0.3.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 283.3 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d9cb75e78a5cecf827523741e7327cb7f211e9ee586b67cad732079671fbd93 |
|
MD5 | 4bccb7ed03817229e11a45071f64dd90 |
|
BLAKE2b-256 | 50405897deb19f634b25dd9864c2b43df98a1b15174c614959831f75526cb837 |
File details
Details for the file pywaterflood-0.3.2-pp38-pypy38_pp73-win_amd64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp38-pypy38_pp73-win_amd64.whl
- Upload date:
- Size: 153.1 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93014f84fcd0a8c5f68a0b3c0f150b6ae31edd22471ff4f8c52981644befe84c |
|
MD5 | 15ce999891c7f2d68751ca8623fb2351 |
|
BLAKE2b-256 | cd1960b80f9fd9cf919d5a1d7d9e6016f36243354f7ffb80c5e91f2e0f1c7de0 |
File details
Details for the file pywaterflood-0.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41cc450f33286813b5d62e9f9073c16614e2b60367ef1702804e4fb567bdf6f0 |
|
MD5 | 53869155b5aa982a548122795c5e494e |
|
BLAKE2b-256 | e2dba808171ac656df7af65458daf552beb1b689e254a58a62eb30dace2c19a7 |
File details
Details for the file pywaterflood-0.3.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f8863ef040bc735b6f4a10c5fc1b1ee0cb596bc2456c019f3e8ba69d31a80546 |
|
MD5 | 2a567e6676a36c56e89b8fc8d377fa31 |
|
BLAKE2b-256 | f7f06c99a9b66b3bac6d6dc7b7280ad123d9517bd6fd78f1d2084a80e4efefe4 |
File details
Details for the file pywaterflood-0.3.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 283.0 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58bbf0c349bc91c11b353adbfd828413c4aca8619c320828979f636c1c119622 |
|
MD5 | fad91915ac246bff271cfaf1d91a4c6f |
|
BLAKE2b-256 | ee92147546c6365650ba4670a1f579e808eef7d8c42e6522579ed508ad8099f9 |
File details
Details for the file pywaterflood-0.3.2-pp37-pypy37_pp73-win_amd64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp37-pypy37_pp73-win_amd64.whl
- Upload date:
- Size: 155.5 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea9c80bb35f9440a44f88d1c25b2d3242ec90f0a1b444978bbc10b1bc6cc054b |
|
MD5 | 3d3a07796fc2c3cc0c7eed70d2ad745d |
|
BLAKE2b-256 | c1b61029955f1f439db85ff277641724fb2d1900cfb551ad6fcce8aecd243025 |
File details
Details for the file pywaterflood-0.3.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1fb57e34c1448b69c00a420cb30b2788a760f1b388e29a5ef591235b8433b292 |
|
MD5 | 7b22b7184ee75cdadd81baf92774b8b8 |
|
BLAKE2b-256 | 74bc042da4afb5098ecc9b391177b48dc4e6f5f1b066d9c57a6d4958a25bcd75 |
File details
Details for the file pywaterflood-0.3.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.2 MB
- Tags: PyPy, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c159e1af9fa32b6ef006109dbaf7ec74aa800b3ce35b023ff1efc739915f466d |
|
MD5 | ee3afd956cd8e1b0942f5c870b11268b |
|
BLAKE2b-256 | a8f045a72713c3b24a0c8d9a8abcaf637e31e5ebd39a3f7bbd2b7ea2575cb941 |
File details
Details for the file pywaterflood-0.3.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 285.2 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b0f1f26425d0e0d7f1ea18f6a7846a7bdbc4805b82499940d4d60a4cf1a16f6f |
|
MD5 | c1e5892c6bd13e530bc51ec128aa2727 |
|
BLAKE2b-256 | 0a68739ea7446b6d6ca2d0a9383992685084eb5f17793437d412a9546f553c06 |
File details
Details for the file pywaterflood-0.3.2-cp37-abi3-win_amd64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-cp37-abi3-win_amd64.whl
- Upload date:
- Size: 152.9 kB
- Tags: CPython 3.7+, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11de5abd31787f9619256d9098b17fa5c6f837e85c020a9f33a4ff3d2aa64be3 |
|
MD5 | 92c92c570b94fd9c5d23bb46b8d1333e |
|
BLAKE2b-256 | 53b0e919b730c215d2f11cfab399d3a10f6d3d8c1be821e380c4637bc6b6a255 |
File details
Details for the file pywaterflood-0.3.2-cp37-abi3-win32.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-cp37-abi3-win32.whl
- Upload date:
- Size: 146.3 kB
- Tags: CPython 3.7+, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b76c0f0871cf4770384ca2dd53218c5806c852b51d7b49eac16515107a8141c1 |
|
MD5 | ce23aa024c859039d6a9008c50130379 |
|
BLAKE2b-256 | 878bea1345749536a3f495c7814e4d1d171dad09d94423e3daa75c843d18d4e4 |
File details
Details for the file pywaterflood-0.3.2-cp37-abi3-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-cp37-abi3-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.7+, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0bb39e4b0a2d4c4be188e0191d71660e72ac8272944e420e31a705e5d2b46fe |
|
MD5 | a05df403d1c37711e204bf53461b00d9 |
|
BLAKE2b-256 | b5b44d85232c40492047e660989e00ef2edbfea987b47ec0ba9388ee9d4e3c7e |
File details
Details for the file pywaterflood-0.3.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.7+, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de940f72d449e9e52e594159c5234c5fbddf580c0960446a91115698dd449744 |
|
MD5 | 99146f9fe86564a5426f64c8152ebbe1 |
|
BLAKE2b-256 | 4dd033b50c134259b68baa48d915dd318cba767b06e948992d3f4620b3729f8d |
File details
Details for the file pywaterflood-0.3.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.7+, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 704e88364fea0ae53f3033257c050dc40264958151aa793f75129677d2071af8 |
|
MD5 | a067d942b8e6d99bbd94442be024c20a |
|
BLAKE2b-256 | 04052e02e12f51dce93b7f0cb30f448181dcec2fc30176872f6be4872d42ff79 |
File details
Details for the file pywaterflood-0.3.2-cp37-abi3-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: pywaterflood-0.3.2-cp37-abi3-macosx_10_9_x86_64.whl
- Upload date:
- Size: 282.7 kB
- Tags: CPython 3.7+, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d71ef2b0f00bce258c39134605b36f56c36ebaa9a5fc958fddaa707c651d64d5 |
|
MD5 | e3966699641bf1a98f8a05f2c8f6168c |
|
BLAKE2b-256 | cc5b60e6610e6822006e33ed89b5c8588acdb58191de8bd9c9990b6a329ba3b4 |