Skip to main content

PyWavelets, wavelet transform module

Project description

Service

Master branch

GitHub

Build Status

Appveyor

Appveyor Status

Read the Docs

Documentation Status

PyWavelets

What is PyWavelets

PyWavelets is a free Open Source library for wavelet transforms in Python. Wavelets are mathematical basis functions that are localized in both time and frequency. Wavelet transforms are time-frequency transforms employing wavelets. They are similar to Fourier transforms, the difference being that Fourier transforms are localized only in frequency instead of in time and frequency.

The main features of PyWavelets are:

  • 1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D, 2D and nD Multilevel DWT and IDWT

  • 1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Transform

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Documentation

Documentation with detailed examples and links to more resources is available online at http://pywavelets.readthedocs.org.

For more usage examples see the demo directory in the source package.

Installation

PyWavelets supports Python >=3.10, and is only dependent on NumPy (supported versions are currently >= 1.23.0). To pass all of the tests, Matplotlib is also required. SciPy is also an optional dependency. When present, FFT-based continuous wavelet transforms will use FFTs from SciPy rather than NumPy.

There are binary wheels for Intel Linux, Windows and macOS / OSX on PyPi. If you are on one of these platforms, you should get a binary (precompiled) installation with:

pip install PyWavelets

Users of the Anaconda Python distribution may wish to obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pywavelets

Several Linux distributions have their own packages for PyWavelets, but these tend to be moderately out of date. Query your Linux package manager tool for python-pywavelets, python-wavelets, python-pywt or a similar package name.

If you want or need to install from source, you will need a working C compiler (any common one will work) and a recent version of Cython. Navigate to the PyWavelets source code directory (containing pyproject.toml) and type:

pip install .

The most recent development version can be found on GitHub at https://github.com/PyWavelets/pywt.

The latest release, including source and binary packages for Intel Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

State of development & Contributing

PyWavelets started in 2006 as an academic project for a master thesis on Analysis and Classification of Medical Signals using Wavelet Transforms and was maintained until 2012 by its original developer. In 2013 maintenance was taken over in a new repo) by a larger development team - a move supported by the original developer. The repo move doesn’t mean that this is a fork - the package continues to be developed under the name “PyWavelets”, and released on PyPi and Github (see this issue for the discussion where that was decided).

All contributions including bug reports, bug fixes, new feature implementations and documentation improvements are welcome. Moreover, developers with an interest in PyWavelets are very welcome to join the development team!

As of 2019, PyWavelets development is supported in part by Tidelift. Help support PyWavelets with the Tidelift Subscription

Contact

Use GitHub Issues or the mailing list to post your comments or questions.

Report a security vulnerability: https://tidelift.com/security

License

PyWavelets is a free Open Source software released under the MIT license.

If you wish to cite PyWavelets in a publication, please use the following JOSS publication.

http://joss.theoj.org/papers/10.21105/joss.01237/status.svg

Specific releases can also be cited via Zenodo. The DOI below will correspond to the most recent release. DOIs for past versions can be found by following the link in the badge below to Zenodo:

https://zenodo.org/badge/DOI/10.5281/zenodo.1407171.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywavelets-1.7.0.tar.gz (3.9 MB view details)

Uploaded Source

Built Distributions

pywavelets-1.7.0-cp313-cp313t-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

pywavelets-1.7.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

pywavelets-1.7.0-cp313-cp313t-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

pywavelets-1.7.0-cp313-cp313-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.13 Windows x86-64

pywavelets-1.7.0-cp313-cp313-win32.whl (4.2 MB view details)

Uploaded CPython 3.13 Windows x86

pywavelets-1.7.0-cp313-cp313-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pywavelets-1.7.0-cp313-cp313-musllinux_1_2_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

pywavelets-1.7.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pywavelets-1.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pywavelets-1.7.0-cp313-cp313-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pywavelets-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

pywavelets-1.7.0-cp312-cp312-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pywavelets-1.7.0-cp312-cp312-win32.whl (4.2 MB view details)

Uploaded CPython 3.12 Windows x86

pywavelets-1.7.0-cp312-cp312-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pywavelets-1.7.0-cp312-cp312-musllinux_1_2_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

pywavelets-1.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pywavelets-1.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pywavelets-1.7.0-cp312-cp312-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pywavelets-1.7.0-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pywavelets-1.7.0-cp311-cp311-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pywavelets-1.7.0-cp311-cp311-win32.whl (4.2 MB view details)

Uploaded CPython 3.11 Windows x86

pywavelets-1.7.0-cp311-cp311-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pywavelets-1.7.0-cp311-cp311-musllinux_1_2_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

pywavelets-1.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pywavelets-1.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pywavelets-1.7.0-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pywavelets-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pywavelets-1.7.0-cp310-cp310-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pywavelets-1.7.0-cp310-cp310-win32.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86

pywavelets-1.7.0-cp310-cp310-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pywavelets-1.7.0-cp310-cp310-musllinux_1_2_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

pywavelets-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pywavelets-1.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pywavelets-1.7.0-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pywavelets-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file pywavelets-1.7.0.tar.gz.

File metadata

  • Download URL: pywavelets-1.7.0.tar.gz
  • Upload date:
  • Size: 3.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for pywavelets-1.7.0.tar.gz
Algorithm Hash digest
SHA256 b47250e5bb853e37db5db423bafc82847f4cde0ffdf7aebb06336a993bc174f6
MD5 f9b29777c446318a308d3c96374e7a37
BLAKE2b-256 940ac235e7dd60d136b14cd8793c440e8d22e7880df5588162feb02d6d6118a3

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e0611ffb6ceeee1b677bd224e657895193eec03ad39538f5263ce61db465f836
MD5 86b64ff3bdbee5c1d0dc3f81e78acf28
BLAKE2b-256 d776a5ff1f1afe1e84c961c7e4b541684c2515ba4c529359f0ee2d9305cb9cd9

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0d8c641aa26e040d62166cbe2052dd3cd575e3e0c78c00c52770be6d7dd386b
MD5 bbf8a0b14f918dc4715680c1e95ed6cc
BLAKE2b-256 8a74036d4a80a48d847161fb3f967239fcd49901809fc93cd25eab3a051f5300

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b7e1a212269d3e48318388744684b702c6a649a70758e35e9a88614316e9b91
MD5 63a640fe4fe3bc3c90056ab10b015c21
BLAKE2b-256 f9398e39c95a7d99e731ab5bcb43ba40778b091a740178000823b56e19d90dcb

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 71918b973950c013c17ff28c3fc2958dfff68ec767ef60cd927a3ac4ff5a7345
MD5 175b2f4462246db9f8615472348f5f97
BLAKE2b-256 1911e0b349efd034a40cc086e166edbed5c9fa59f27f298b42be4fb6004a82dc

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: pywavelets-1.7.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 097bd03ee1b687942fa2f82ad0d35849879eef0ac82fc6f757d6ef881c53db6d
MD5 f0ebcc3343b2b3e55a09a05c4713ec55
BLAKE2b-256 2df035ae951344e3a5a7e6824aff9476032f4f2ebab3ef050c4d2d91321a7669

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 eac60fdb28bd421f72eb18824bd2e4f36c3dab0d7f4802ebfe4bbf68744a524a
MD5 dc4ce3c229ac7f7ce3673f47d3f2d282
BLAKE2b-256 5e848d385d4a1e5ea79e166c3f65d6a58c76e5fa63106fa29c7c2c9deb03ddbb

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 105249d2bf824bddfb286e4e08934ff1e8829aa3077dab74ce3b2921a09caa43
MD5 f7b8cd11ad77d3dad6fecf9735945e9c
BLAKE2b-256 88632fce3368cca2cc988723e6d48e68ce1056825675841fc1a9042629f8d1a9

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 259ccf233879cf0ed66052ffd174dcabe6314e92b53aa2de25f4ae50b08ea1e3
MD5 8f1312748110a4e330002ba4bfa56a61
BLAKE2b-256 c03c55137ea3b137b9e7a72822275f51214b91f3c368c9eb3ea671e1e3bb0786

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ff81dd8288afdd5f2eae6c44f963152b41e14e2e5fc647b608c97bd6f8270fe
MD5 72ac9890ee0422b5621ff74119aa105a
BLAKE2b-256 84d03b839e6f05db4b6834fcc83f37e8bb6d7abdccfb8899000a2898c62d0c53

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f402424288178fd105a5cb76e1818649dc67e4a08d1b9974c8c7ef01dc5feb3
MD5 b7af65a6cf4703cc0c7cce5d7fd6fcbd
BLAKE2b-256 e968eb5a02ec3ade3076af47a4236f744ec6859506036976b93072bbf47cc8a3

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6a322607b8c2985997ea45317d36cab58f0223ccf4c5b6540b612ed067d099ff
MD5 128525ba9cb3dd880147300941a8da59
BLAKE2b-256 520fdaedf2516c22cdb3ef208de286e77ebbf69da1c08cca3e086ecec057c738

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 29a912c074977db6adf3782dfbd414945805039b755d0c23979bc823f1b4e9c3
MD5 b048a344220da5d5dd568592a31da6ac
BLAKE2b-256 d6bfdc8836f983876a43cb15791f0ff15dab6631f423ca6ba55c068d8764ddf8

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: pywavelets-1.7.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0cd599c78fc240cbadb63344d73912fc79e8dccbb0db8a8bd5143df400c3a519
MD5 50dc3d758d005ac0fad4070e1d312a3f
BLAKE2b-256 ce7415942502ec146c0e06d3f62ebeeeb2cfa873b57413a44238171cc3658387

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4a2a8cc39901f09d82fc94007026f9aed63876e334ae043eb26caa601aee2551
MD5 142c2624bb969c7c00f89ace4a30c35d
BLAKE2b-256 f5528e756c9783e7e7c43058cc3e9e9633935206ac77ff13580d489669d84b98

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 40ebb994b332d48db3b0564e3c335c4f8ba236283939f5167de099766cf16517
MD5 e982f4c2009f2536cce22d13716f7983
BLAKE2b-256 f334ad1502dc37295249000d3644c5bd183f5c063e9cebb3a37a9422121d77c1

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bd2611076f5d2c4ad940421bbb3c450b6a53d8ca24bde02662455dc67c70dac
MD5 764375176063c6d4eb9531cd6221703c
BLAKE2b-256 53b608d5ea524a5ed25e1f94fba428ac605f0f774bea4a8cf14dbdc7947a2bc5

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ad14d8b5a412a621406276b8ae8ee1e369ba7a7f8e517fb87355bcb8106820f
MD5 10ac801731b7768ac706d8655e1e3d1f
BLAKE2b-256 05a390cad7bfbd765f39bcd96af3efdefcf6fd05a49b7e81fc281f1be7a8e637

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74e838e0225783f37ae346e60a9f783b4a31adc5731b9cb6d687ee5c93bd87b7
MD5 950c501451c6f58b1333d06318fb6ad1
BLAKE2b-256 9ccfb5b1706d7054d792bdf678c894f4ad8f8cdaa789f82b7eaa48b80aa45ba0

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 badb7dc70ecd8042ddd98fdd41803d5e5b28bf7c90910bb1751906812326ab54
MD5 93542b9ee43aae10cbcb8b215f31cce8
BLAKE2b-256 7248b6dbb1124bfa15e2d16dc2c199562d0a9c3d7e7333348b29d05f68cdf146

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3e3c8c0fa44f4de7bf05c5d12883b227aaf6dcf46deb3f6f5a9fa5bb79c33283
MD5 824794b71e7d5df27cffb074b9fc32fc
BLAKE2b-256 8149ba85ea2acf08a113a17da37e6b8cdaa432ad3946fe6cc480fe98f20b5231

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywavelets-1.7.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c7b47d94aefe6e03085f4d9ce74f6133741164d470ac2839af9906686c6c2ed1
MD5 81053297a2c33530a97c30edb72b58f3
BLAKE2b-256 e7141c197e0f2f657fd18c6db0281377ac8928abf232ab954a44efce82048670

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8bdab6b1781f01c087c54782d656a4fc1df77796c241f122445adcbb24892839
MD5 2f97b9d18a0006d5b3c55fc0ae556f74
BLAKE2b-256 9f701e83a42a4084de2f3440a7af79adec69e52e679b13eb0ff8d787af330037

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8565de589f42283bca17ddca298f1188a26ef8ee75cadc4a4744cadf5a79cfdf
MD5 1148dd5d8b448098497295b4f1e3be07
BLAKE2b-256 05e863037524d8cc82f0fee1b744f41eaee9a8bd93c80de9b437a179fb258f0a

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05dc2930cf9b7f61a24b2fe52b18e9d6046012fc46fc360355222781a95a1378
MD5 2bdb4ff0d9900ee4245991a25bddd8aa
BLAKE2b-256 45e93a047a49a6fd0917ba3e436ff93825f8cecc3cb55720d798bc71433a5433

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d81d2486e4f9b65f7c6cab252f3e706c8e8e72bbd0311f72c1a5ec56c947d257
MD5 a8b10eb300fc34fb93786f47e10edd71
BLAKE2b-256 7cbde65c7d3a8e7e7b79ee77499fc1637c65c738c458a7f6469433b6050935c4

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae3ae86ba69d75327b1c5cd368138fb9329bc7eb7418d6b0ce9504c5070974ef
MD5 b3ece618771527c6cf40eb497367b8ed
BLAKE2b-256 1e77b2c9976cbc7c378c72a8e7cff08a2ed49e26ef58e1a8fcaa523aadae5419

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 392553248aed33eac6f38647acacdba94dd6a8f283319c2d9852de7a871d6d0f
MD5 6f6f8fa6eba2ead892d83fffcb9bd71c
BLAKE2b-256 df304ab2547017bd6af02d916ce87e7fc55d08dbfe466b0440bea79a71b16ae4

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0b37212b7524438f694cb619cc4a0a3dc54ad77b63a18d0e8e6364f525fffd91
MD5 137773eb8a904a62ac149be449a216ca
BLAKE2b-256 ced191298a86da6680aad9064b0b18475fd224ca47ff6646823a920addcabfff

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywavelets-1.7.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d5fc7fbad53379c30b2c9d46c235130a4b96e0597653e32e7680a310da06bd07
MD5 749cf6c23242778662773c761446681c
BLAKE2b-256 455485649111f4ccadf45edbec3bee4ab0380b38cb2bf0067214b14800e3b873

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1a550fdbe134040c04f1bb46cfe13a1a903c5dce13090b681106e4db99feba81
MD5 0094d5a3981a0e2dce6e6b7d26799d34
BLAKE2b-256 2849a16de31134a4161eb017b9b330a5f334bd62edabb70def6b8e17d4247a5e

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3740c84de06fab5081c8f08994f12f9ee94dc2eb4d818eaeace3bdb0b838e2fc
MD5 23050a5fb46c3f89b8b8a357bae72934
BLAKE2b-256 0b16137ff09a8295ca9beefdd89f7afc97647963f08a62016696d500781cdf98

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a469a7e73f5ab1d59b52a525a89a4a280426d1ba08eb081261f8bc6775f101d6
MD5 738422e24861ea6f57028221aaf60b52
BLAKE2b-256 d660056374044b41f6e2ccca8239d1c9e422e3906f54c7cd08d55a19d98e2a28

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fc5e0e592678e43c18dd169b0d8471e9a5ffb5eb7ff4bdc8f447c882f78aa8b
MD5 4c7e67a901ce458c06d042df0fea200b
BLAKE2b-256 1d4732324220b427b07bfcdfbd88a37ffdacdba8423b219ca4ebd85043c11b91

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 953b877c43f1fa53204b1b0eedd04efa6739378a873e79fa34ee5296d47a9ca1
MD5 748c2697a323834785c835d6d2c2ebd2
BLAKE2b-256 193f931e03737d6a216b1b390ef9a47191f8dd977484efdde2bca5b87ca5c3b3

See more details on using hashes here.

File details

Details for the file pywavelets-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d99156b461f914cafbe6ee3b511612a83e90061addbe1f2660f522e9841fbdc4
MD5 b54da7f05d481e402fcb13d0e266f137
BLAKE2b-256 d4efab21d4963ff9810e38194a934a45d92145a07b4e491e9e5d91cc5bf87401

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page