Skip to main content

A Python wrapper for the Weka data mining library.

Project description

Weka - Python wrapper for Weka classifiers

Overview

Provides a convenient wrapper for calling Weka classifiers from Python.

Installation

First install the Weka and LibSVM Java libraries. On Debian/Ubuntu this is simply:

sudo apt-get install weka libsvm-java

Then install the Python package with pip:

sudo pip install pywekaclassifiers

Usage

Train and test a Weka classifier by instantiating the Classifier class, passing in the name of the classifier you want to use:

from pywekaclassifiers.classifiers import Classifier
c = Classifier(name='weka.classifiers.lazy.IBk', ckargs={'-K':1})
c.train('training.arff')
predictions = c.predict('query.arff')

Alternatively, you can instantiate the classifier by calling its name directly:

from pywekaclassifiers.classifiers import IBk
c = IBk(K=1)
c.train('training.arff')
predictions = c.predict('query.arff')

The instance contains Weka's serialized model, so the classifier can be easily pickled and unpickled like any normal Python instance:

c.save('myclassifier.pkl')
c = Classifier.load('myclassifier.pkl')
predictions = c.predict('query.arff')

Development

Tests require the Python development headers to be installed, which you can install on Ubuntu with:

sudo apt-get install python-dev python3-dev python3.4-dev

To run unittests across multiple Python versions, install:

sudo apt-get install python3.4-minimal python3.4-dev python3.5-minimal python3.5-dev

To run all tests:

export TESTNAME=; tox

To run tests for a specific environment (e.g. Python 2.7):

export TESTNAME=; tox -e py27

To run a specific test:

export TESTNAME=.test_IBk; tox -e py27

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywekaclassifiers-0.0.3.tar.gz (483.3 kB view details)

Uploaded Source

Built Distribution

pywekaclassifiers-0.0.3-py3-none-any.whl (81.1 kB view details)

Uploaded Python 3

File details

Details for the file pywekaclassifiers-0.0.3.tar.gz.

File metadata

  • Download URL: pywekaclassifiers-0.0.3.tar.gz
  • Upload date:
  • Size: 483.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for pywekaclassifiers-0.0.3.tar.gz
Algorithm Hash digest
SHA256 9149649da1ca8e0f9536af1669d76e16af30150255ae41e9d83e98b05388fce1
MD5 c17ce003d3461b26d453b7bbb663cbe4
BLAKE2b-256 0fa9892927d3e2b2b33e7652ffc582475cdc9e4940efb371715fc6d1a383228f

See more details on using hashes here.

File details

Details for the file pywekaclassifiers-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pywekaclassifiers-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for pywekaclassifiers-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1b2a3f694b32ca6c439dfd5ef73ceb4e955b07575217de14563f0498c98beb8b
MD5 e5768a5766dc258ceeeeac61cb24b422
BLAKE2b-256 fa262e72a9db4033927e295e1f1266139aff731fc10d6df18cb8a1159a15676d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page