Skip to main content

Python bindings for whisper.cpp

Project description

pywhispercpp

Python bindings for whisper.cpp with a simple Pythonic API on top of it.

License: MIT Wheels PyPi version Downloads

whisper.cpp is:

High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model:

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
  • AVX intrinsics support for x86 architectures
  • VSX intrinsics support for POWER architectures
  • Mixed F16 / F32 precision
  • Low memory usage (Flash Attention)
  • Zero memory allocations at runtime
  • Runs on the CPU
  • C-style API

Supported platforms:

Table of contents

Installation

First Install ffmpeg

# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg

# on Arch Linux
sudo pacman -S ffmpeg

# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg

# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg

# on Windows using Scoop (https://scoop.sh/)
scoop install ffmpeg

PYPI

  1. Once ffmpeg is installed, install pywhispercpp
pip install pywhispercpp

If you want to use the examples, you will need to install extra dependencies

pip install pywhispercpp[examples]

From source

You can install the latest dev version from GitHub:

pip install git+https://github.com/abdeladim-s/pywhispercpp

CoreML support

Thanks to @tangm, using CoreML is now supported:

To build and install, clone the repository and run the following commands:

export CMAKE_ARGS="-DWHISPER_COREML=1"
python -m build --wheel # in this repository to build the wheel. Assumes you have installed build with pip install build
pip install dist/<generated>.whl

Then download and convert the appropriate model using the original whisper.cpp repository, producing a <model>.mlmodelc directory.

You can now verify if everything's working:

from pywhispercpp.model import Model

model = Model('<model_path>/ggml-base.en.bin', n_threads=6)
print(Model.system_info())  # and you should see COREML = 1

If successful, you should also see the following on your terminal:

whisper_init_state: loading Core ML model from '<model_path>/ggml-base.en-encoder.mlmodelc'
whisper_init_state: first run on a device may take a while ...
whisper_init_state: Core ML model loaded

Quick start

from pywhispercpp.model import Model

model = Model('base.en', n_threads=6)
segments = model.transcribe('file.mp3', speed_up=True)
for segment in segments:
    print(segment.text)

You can also assign a custom new_segment_callback

from pywhispercpp.model import Model

model = Model('base.en', print_realtime=False, print_progress=False)
segments = model.transcribe('file.mp3', new_segment_callback=print)
  • The ggml model will be downloaded automatically.
  • You can pass any whisper.cpp parameter as a keyword argument to the Model class or to the transcribe function.
  • The transcribe function accepts any media file (audio/video), in any format.
  • Check the Model class documentation for more details.

Examples

The examples folder contains several examples inspired from the original whisper.cpp/examples.

Main

Just a straightforward example with a simple Command Line Interface.

Check the source code here, or use the CLI as follows:

pwcpp file.wav -m base --output-srt --print_realtime true

Run pwcpp --help to get the help message

usage: pwcpp [-h] [-m MODEL] [--version] [--processors PROCESSORS] [-otxt] [-ovtt] [-osrt] [-ocsv] [--strategy STRATEGY]
             [--n_threads N_THREADS] [--n_max_text_ctx N_MAX_TEXT_CTX] [--offset_ms OFFSET_MS] [--duration_ms DURATION_MS]
             [--translate TRANSLATE] [--no_context NO_CONTEXT] [--single_segment SINGLE_SEGMENT] [--print_special PRINT_SPECIAL]
             [--print_progress PRINT_PROGRESS] [--print_realtime PRINT_REALTIME] [--print_timestamps PRINT_TIMESTAMPS]
             [--token_timestamps TOKEN_TIMESTAMPS] [--thold_pt THOLD_PT] [--thold_ptsum THOLD_PTSUM] [--max_len MAX_LEN]
             [--split_on_word SPLIT_ON_WORD] [--max_tokens MAX_TOKENS] [--speed_up SPEED_UP] [--audio_ctx AUDIO_CTX]
             [--prompt_tokens PROMPT_TOKENS] [--prompt_n_tokens PROMPT_N_TOKENS] [--language LANGUAGE] [--suppress_blank SUPPRESS_BLANK]
             [--suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS] [--temperature TEMPERATURE] [--max_initial_ts MAX_INITIAL_TS]
             [--length_penalty LENGTH_PENALTY] [--temperature_inc TEMPERATURE_INC] [--entropy_thold ENTROPY_THOLD]
             [--logprob_thold LOGPROB_THOLD] [--no_speech_thold NO_SPEECH_THOLD] [--greedy GREEDY] [--beam_search BEAM_SEARCH]
             media_file [media_file ...]

positional arguments:
  media_file            The path of the media file or a list of filesseparated by space

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Path to the `ggml` model, or just the model name
  --version             show program's version number and exit
  --processors PROCESSORS
                        number of processors to use during computation
  -otxt, --output-txt   output result in a text file
  -ovtt, --output-vtt   output result in a vtt file
  -osrt, --output-srt   output result in a srt file
  -ocsv, --output-csv   output result in a CSV file
  --strategy STRATEGY   Available sampling strategiesGreefyDecoder -> 0BeamSearchDecoder -> 1
  --n_threads N_THREADS
                        Number of threads to allocate for the inferencedefault to min(4, available hardware_concurrency)
  --n_max_text_ctx N_MAX_TEXT_CTX
                        max tokens to use from past text as prompt for the decoder
  --offset_ms OFFSET_MS
                        start offset in ms
  --duration_ms DURATION_MS
                        audio duration to process in ms
  --translate TRANSLATE
                        whether to translate the audio to English
  --no_context NO_CONTEXT
                        do not use past transcription (if any) as initial prompt for the decoder
  --single_segment SINGLE_SEGMENT
                        force single segment output (useful for streaming)
  --print_special PRINT_SPECIAL
                        print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
  --print_progress PRINT_PROGRESS
                        print progress information
  --print_realtime PRINT_REALTIME
                        print results from within whisper.cpp (avoid it, use callback instead)
  --print_timestamps PRINT_TIMESTAMPS
                        print timestamps for each text segment when printing realtime
  --token_timestamps TOKEN_TIMESTAMPS
                        enable token-level timestamps
  --thold_pt THOLD_PT   timestamp token probability threshold (~0.01)
  --thold_ptsum THOLD_PTSUM
                        timestamp token sum probability threshold (~0.01)
  --max_len MAX_LEN     max segment length in characters
  --split_on_word SPLIT_ON_WORD
                        split on word rather than on token (when used with max_len)
  --max_tokens MAX_TOKENS
                        max tokens per segment (0 = no limit)
  --speed_up SPEED_UP   speed-up the audio by 2x using Phase Vocoder
  --audio_ctx AUDIO_CTX
                        overwrite the audio context size (0 = use default)
  --prompt_tokens PROMPT_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --prompt_n_tokens PROMPT_N_TOKENS
                        tokens to provide to the whisper decoder as initial prompt
  --language LANGUAGE   for auto-detection, set to None, "" or "auto"
  --suppress_blank SUPPRESS_BLANK
                        common decoding parameters
  --suppress_non_speech_tokens SUPPRESS_NON_SPEECH_TOKENS
                        common decoding parameters
  --temperature TEMPERATURE
                        initial decoding temperature
  --max_initial_ts MAX_INITIAL_TS
                        max_initial_ts
  --length_penalty LENGTH_PENALTY
                        length_penalty
  --temperature_inc TEMPERATURE_INC
                        temperature_inc
  --entropy_thold ENTROPY_THOLD
                        similar to OpenAI's "compression_ratio_threshold"
  --logprob_thold LOGPROB_THOLD
                        logprob_thold
  --no_speech_thold NO_SPEECH_THOLD
                        no_speech_thold
  --greedy GREEDY       greedy
  --beam_search BEAM_SEARCH
                        beam_search

Assistant

This is a simple example showcasing the use of pywhispercpp as an assistant. The idea is to use a VAD to detect speech (in this example we used webrtcvad), and when some speech is detected, we run the transcription.
It is inspired from the whisper.cpp/examples/command example.

You can check the source code here or you can use the class directly to create your own assistant:

from pywhispercpp.examples.assistant import Assistant

my_assistant = Assistant(commands_callback=print, n_threads=8)
my_assistant.start()

Here we set the commands_callback to a simple print, so the commands will just get printed on the screen.

You can run this example from the command line as well

$ pwcpp-assistant --help

usage: pwcpp-assistant [-h] [-m MODEL] [-ind INPUT_DEVICE] [-st SILENCE_THRESHOLD] [-bd BLOCK_DURATION]

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -ind INPUT_DEVICE, --input_device INPUT_DEVICE
                        Id of The input device (aka microphone)
  -st SILENCE_THRESHOLD, --silence_threshold SILENCE_THRESHOLD
                        he duration of silence after which the inference will be running, default to 16
  -bd BLOCK_DURATION, --block_duration BLOCK_DURATION
                        minimum time audio updates in ms, default to 30

Recording

Another simple example to transcribe your own recordings.

You can use it from Python as follows:

from pywhispercpp.examples.recording import Recording

myrec = Recording(5)
myrec.start()

Or from the command line:

$ pwcpp-recording --help

usage: pwcpp-recording [-h] [-m MODEL] duration

positional arguments:
  duration              duration in seconds

options:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en

Live Stream Transcription

This example is an attempt to transcribe a livestream in realtime, but the results are not quite satisfactory yet, the CPU jumps quickly to 100% and I cannot use huge models on my descent machine. (Or maybe I am doing something wrong!) :sweat_smile:

If you have a powerful machine, give it a try.

From python :

from pywhispercpp.examples.livestream import LiveStream

url = ""  # Make sure it is a direct stream URL
ls = LiveStream(url=url, n_threads=4)
ls.start()

From the command line:

$ pwcpp-livestream --help

usage: pwcpp-livestream [-h] [-nt N_THREADS] [-m MODEL] [-od OUTPUT_DEVICE] [-bls BLOCK_SIZE] [-bus BUFFER_SIZE] [-ss SAMPLE_SIZE] url

positional arguments:
  url                   Stream URL

options:
  -h, --help            show this help message and exit
  -nt N_THREADS, --n_threads N_THREADS
                        number of threads, default to 3
  -m MODEL, --model MODEL
                        Whisper.cpp model, default to tiny.en
  -od OUTPUT_DEVICE, --output_device OUTPUT_DEVICE
                        the output device, aka the speaker, leave it None to take the default
  -bls BLOCK_SIZE, --block_size BLOCK_SIZE
                        block size, default to 1024
  -bus BUFFER_SIZE, --buffer_size BUFFER_SIZE
                        number of blocks used for buffering, default to 20
  -ss SAMPLE_SIZE, --sample_size SAMPLE_SIZE
                        Sample size, default to 4

Advanced usage

  • First check the API documentation for more advanced usage.
  • If you are a more experienced user, you can access the C-Style API directly, almost all functions from whisper.h are exposed with the binding module _pywhispercpp.
import _pywhispercpp as pwcpp

ctx = pwcpp.whisper_init_from_file('path/to/ggml/model')

Discussions and contributions

If you find any bug, please open an issue.

If you have any feedback, or you want to share how you are using this project, feel free to use the Discussions and open a new topic.

License

This project is licensed under the same license as whisper.cpp (MIT License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywhispercpp-1.2.0.tar.gz (234.3 kB view details)

Uploaded Source

Built Distributions

pywhispercpp-1.2.0-pp310-pypy310_pp73-win_amd64.whl (121.4 kB view details)

Uploaded PyPy Windows x86-64

pywhispercpp-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (971.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (947.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pywhispercpp-1.2.0-pp39-pypy39_pp73-win_amd64.whl (121.3 kB view details)

Uploaded PyPy Windows x86-64

pywhispercpp-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (971.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (947.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pywhispercpp-1.2.0-pp38-pypy38_pp73-win_amd64.whl (121.4 kB view details)

Uploaded PyPy Windows x86-64

pywhispercpp-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (971.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (947.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pywhispercpp-1.2.0-cp312-cp312-win_amd64.whl (123.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

pywhispercpp-1.2.0-cp312-cp312-win32.whl (110.1 kB view details)

Uploaded CPython 3.12 Windows x86

pywhispercpp-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pywhispercpp-1.2.0-cp312-cp312-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pywhispercpp-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (971.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl (953.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pywhispercpp-1.2.0-cp312-cp312-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.2.0-cp311-cp311-win_amd64.whl (121.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

pywhispercpp-1.2.0-cp311-cp311-win32.whl (109.1 kB view details)

Uploaded CPython 3.11 Windows x86

pywhispercpp-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pywhispercpp-1.2.0-cp311-cp311-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pywhispercpp-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (972.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl (948.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pywhispercpp-1.2.0-cp311-cp311-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.2.0-cp310-cp310-win_amd64.whl (122.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pywhispercpp-1.2.0-cp310-cp310-win32.whl (109.2 kB view details)

Uploaded CPython 3.10 Windows x86

pywhispercpp-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pywhispercpp-1.2.0-cp310-cp310-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pywhispercpp-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (972.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl (948.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pywhispercpp-1.2.0-cp310-cp310-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.2.0-cp39-cp39-win_amd64.whl (122.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

pywhispercpp-1.2.0-cp39-cp39-win32.whl (109.4 kB view details)

Uploaded CPython 3.9 Windows x86

pywhispercpp-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pywhispercpp-1.2.0-cp39-cp39-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pywhispercpp-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (972.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (948.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pywhispercpp-1.2.0-cp39-cp39-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pywhispercpp-1.2.0-cp38-cp38-win_amd64.whl (121.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

pywhispercpp-1.2.0-cp38-cp38-win32.whl (109.2 kB view details)

Uploaded CPython 3.8 Windows x86

pywhispercpp-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pywhispercpp-1.2.0-cp38-cp38-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pywhispercpp-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (972.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pywhispercpp-1.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pywhispercpp-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (948.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pywhispercpp-1.2.0-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pywhispercpp-1.2.0.tar.gz.

File metadata

  • Download URL: pywhispercpp-1.2.0.tar.gz
  • Upload date:
  • Size: 234.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pywhispercpp-1.2.0.tar.gz
Algorithm Hash digest
SHA256 d0c4a6c06ca7d35f4af55f75000006c3039043b0b2ba7eee42abed1d4ea63ccf
MD5 5ef216175c4c822559a027670df1e1ac
BLAKE2b-256 14c6a9c5ac396a99f62b177e4bf339ac31d35f5377e2caae2c1474fec1bb7056

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 661f85dac22c8395431c563f35948858f89fced2573f62213ada3a0bed921e63
MD5 6f037e72f9853b606f6adc579213ed7c
BLAKE2b-256 2cf3cb15a452507b3cf37b61c144db9da8aa1670bd9ded24436a9d1e4fa01b90

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6c136b885a88ce3aec59fb8f024393d73d02a10a6b0144f8b097f20ee0f66e8
MD5 822354c657a8660438d82be98b59690d
BLAKE2b-256 51a2c62b2353c857a9a385ea19d6c736cb4c1d50dc4d136bd4d24ac7e47a0d26

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7144cc2903ecb6db4d9312f80113f9839b389b4ed1d26a6b34261592decbd1f5
MD5 1b5381c151d2a593d6e43f2ee6deda4e
BLAKE2b-256 72dec618206e697bff04a45473fff0b0c13aa1a163aeb929a0f07cb8b1d8cb34

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ce78c05a7edded9349900873a59a6bc534591b56c9435634408f69f69f4cc43
MD5 afc4ba964402cb6afca003db9080763a
BLAKE2b-256 3b3ff7755aeea0bca575775141600042cf6372643640b6e5521a6f955cdd41a2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6a63cc13de825952f1023a055e4462e95c8e2f0278b9994db556b9b6e5b60b17
MD5 e911eefc7ba3553df5724aefd4e18c7d
BLAKE2b-256 37135b9269881083ee2bb4de90e3f96107f3ee8b9ff374c56e87187a4803fc3b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d80fba568f668f0e2706a264ece25bc239d7f00dfd02d882e3f4a91f843b91c
MD5 9ced58b0740a8e1da98692396dbfb8f0
BLAKE2b-256 72462d79d9dc2a3954fb57d0d07779d434aec5ea167410089b803de2003c0a82

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cd7e97da6a292ef451ce736c2d42477f70754671af8e69e9d9fc4748d4551844
MD5 0bec1b033e8b8eafe06c6bb5303097a6
BLAKE2b-256 935ee5dc3770aef030447bd94fb52f02a499b0cb7579ee194d529f2772bf503b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5388039cf2c3a0156341fa44f95a5420c3a76bb53a3846d0f9c3c4bbca4ea0d
MD5 3066253a28e9a0ad46c14329013b43eb
BLAKE2b-256 746a658570069002e834f18985fc0715eeb90a7d319cf284477807f96169f776

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e39c1ec86e99709b4ee5da2f9ca185cf1580d31bc2e40a6ac32eedf382b18e31
MD5 59cad03e156f1149f13a9276403b6b26
BLAKE2b-256 b5dad29e880f7d591e0258634ca688dbafffca1896dddf4850605a28f5f3d109

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d07452120773f87050855cf54aa0aafefe3e055f9b493952876be0b9cf72247
MD5 f92f1e9df6c5a747efbcf494fb3397df
BLAKE2b-256 f9ea1fb03baa017a89b95ee6a0afd0b351dcf1803e3c6ff0ab2081aa103fb28e

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 90d6df210a9b9084dd4be014305b0a67fefac3056d91bdd5952abd15d1287ed2
MD5 99e5536be0adde78d4a6ee6260545ee4
BLAKE2b-256 d036377fa7c12dc86de9b7bab50a4b30aeaf78b2d96a7df74065d8be7d2d1ba0

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 251360ca61fe710fcc455ae47a0e40c55879a62a9cb2b433d35b3226f858074c
MD5 acd3deb78afa34666e12427645076711
BLAKE2b-256 94b6c37cf357c2861390738fefc625d7c553126082945ca0fe2e7181901b7861

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2fb81edc212d69289ed6f0008afe7deb5fa9eb23043e9a8bfe37b7964fd76a91
MD5 323f8b1ab7bf8eaaee5ffe5b4d547b7d
BLAKE2b-256 0cd8ac34f48e1f061586cd15383d3598f7a79aee60c400cbed6e7957d3bc7e41

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 6cabe0e499ef5721e32f91014a70a89ede3503a4dd0ae54626bd21f37fe9ffe7
MD5 d2fd0e2203746dc29ede98ad0db704e6
BLAKE2b-256 2c6485c7a9b12b70ea7f7ba424dfdda0776d128edf85890cb998283ee9ba6bd0

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 76657796b680feb5b728f4aee90d4b3f7995d0daa294a746c7f29a436d8d6797
MD5 590dc02054cf99a1affedd6a66e5e32c
BLAKE2b-256 c4b375276c0f40e3daaaf9a0d6a02ce93a195c59cb6cc8a00ed21cf2546529ae

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5b6c2eaf4d68fb01a04f3969a2d5543ec60d20b809d67713aa020b4029b4e6e9
MD5 cf1fe135dad1a91daa34c8e0b520498f
BLAKE2b-256 f85f0a14152e9814c5cf171c4099574e83ee9e683514d87268da1debe87ec3ee

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e67a62b4a90653037f8a845e66ebd36475c28af85d126fa1c7f7fd44c1a7b15
MD5 43f5edee6b114e89d084f542cd910d7e
BLAKE2b-256 cbe90718b13d5de3ad3e5e411f019bcd693e14dc5132678a28c939c68317e888

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f915b3276dbd2fb29700f2ddfa6fd99dc464b8f19c52ef8ecfb62f94e73f2932
MD5 a62c01f656213952a0a860b359475134
BLAKE2b-256 6b2b477f5fc0a18e92846c84cb54b39ed96572a12ef58f191f121d15f6cca16b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5964f9681a0c904429c33e65898a2bef131a70d61587966b27f5582d92973d1
MD5 68cfeac59fff3ab7eb6d8ff61b5f9f7a
BLAKE2b-256 9862eee9091375294b6872a4152c2a0fe7761a1e0cd1094162e1e5a084a27eeb

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 148c84315e1511c03e2f0887078615842fb8a9ae145a75b30d168e4a25852a0a
MD5 11b7c716b6edcb690ce35a732dfa28d4
BLAKE2b-256 dd056a1b49e918f49015801bfba48a0bf5c4968d01a7aca8d88e832ad0bd9243

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 964fe61c4ac9f83012ebbe90bed3ebd67821c9521de3bd66af02bd66b3ac6717
MD5 a86a584c8741dd5c9357acaae34daa41
BLAKE2b-256 8b63162dfab3b7cb797c18608127f47d1f8be75543170da7070527d6d35b53ee

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 339e63b8c753c2491be6cf963038ec75df695c02c3bece0695e7a5b65dd32479
MD5 eeb34c2bf327b289e0dcfe6bfef7961b
BLAKE2b-256 8ca5400ce63fde9e87b4d6c82087f672ba73964a899a96cb69042083fd8065ca

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c5e1f4b09ea493138f8a6fa1f2d1408a9bf6e8cc9bac29ecc0911008210946c4
MD5 4e3d90dc1473658ed6285efdd01bd596
BLAKE2b-256 408e6dd33db76d714ae9a1b7177a6e744051abdb1335f3d3886c1de9fc099bbd

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ce3362fbc40c728b613bf952b4808757632821feee4707bcd9fd2986aea67715
MD5 d6b863830ea5c108311aad027b1a46fc
BLAKE2b-256 75420d3044408df880c5c97f8ccadd387fd53db1f28cec05390d50b84b814d57

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb76c63c98a63f4d501c76d32fba1cbd9ae0faf01b9dc233c82dc8269343af3f
MD5 8f05c2d702ea1d831a888d82a2822218
BLAKE2b-256 bf249c334f97d1823c22b75efda3c9db00d061f8b53ba81f648c69ea2e994dd5

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0ba6aa0618eaea9bc64810b416c87b883a5abac0a11484ec789a0fddeb443c18
MD5 df598f50a6f72afabda0bfb0905b2040
BLAKE2b-256 e54c1025f4dd9670a92db14ee2061ec9655f8a01404be00d10fcff70da51e040

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7eb33365165424b3d023ca901f1f88bc6fb54fc9acf2d1992f6ff4876de83c6e
MD5 752d65d085ff3b194e9be2dcf4ccbc60
BLAKE2b-256 a3165b691d6846c3665d856ef58d92426f94c5395e7f8632d39bf74386b62a2a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c28cdbc2259d3a47b3d65fb83db37f30c42831b00e04384ef57a327426f91ba9
MD5 2ac3c7da58381c443187e217718253ac
BLAKE2b-256 c9f9f8a0590766a9bcaeaf7b036cdc05587674d66fb8fb3f3899bdba547681cc

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2e4a237f0ccf6a5387dce76f52e9196732f7f59e973ed51b1b4d1f77772e7e92
MD5 997efd1c1bccb0ee310593152bc47338
BLAKE2b-256 4b895cbf8f853ac7ac19b883ad63621b7812fd07b900469e0cb6fbdd3a2b4f4d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7014df097eed5b189ceccc827166aab2881c15bdccb1037ffe02c4a7c4860fc5
MD5 98e3730c752283b0605efa61fdd82029
BLAKE2b-256 1c7cc41b0d4463a0f16ec6f706324036bf41ff09b8320872b7b0ad92d0712398

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2ec1acb252e640d2af12315f58c0fa54ba4b13bc0ab7c6779de9fe3cceb88093
MD5 b6a4ed243a0a91d40910e2b89101dc9a
BLAKE2b-256 0e78d716ac62f879d544aff345a9a25f9fa915d2330a1d762d1ecbf8bb7b0a62

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8bcd164d202a9535ede40ae473c20305e98a47c3d611c4c9b549e300a8dd475a
MD5 9caa95e51c6396e51892d843ce30b5a5
BLAKE2b-256 a826e798ef9d6cbb4cdd599e05b07c3f5229285bbdc81e4363d29bf9af01221f

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff485cce822b88969ece4c62a81a8d064f8447ad805f60e354b7ec519bc74f94
MD5 b192549ee81211fc8b9c6352862719f6
BLAKE2b-256 1fb0abd8e50ef4f29810ce59dd9b525dee999fc6e1ff4bffaea6485f132ab1a2

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41f98ae21929277031a83653b9f78a76ad8fb3fb2079eee049ef17fe7d7694a7
MD5 be4709b51bedd3639e551a200f5bde7c
BLAKE2b-256 f1f091059105cedd0ca11097b45d2efa32fbb35e906f7bbff830a005f659b020

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e20a3d6cdf4feb5229324625e904ea5578df967e101c583e50f53749c8f2cf95
MD5 dab830d02eaf8b2d6df943bad437d322
BLAKE2b-256 6798679debe87da2aef9b20ab7a30b92bdabf5dfbc991292a81834cea22089b4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3e8a627e3c52d1335ac33b780b1d39cd577e960b05c5ae06d66bd735984b89c6
MD5 4ed8b20995826d9139b1c4cfd9cee64e
BLAKE2b-256 125698733a83176393a4b9f67f11d817b2937a044ca8ca5b64d2cf1ba8a96600

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 674bcf9fea6229259cefa6bf25dc762f009e02aa929518d5725f0fcb2cac642e
MD5 d84fe31f74f956973930e8191a2325f2
BLAKE2b-256 4edbe2fff7abb824ac1f3e81f093e26cc8592ac02638461488b90cf5679f827a

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 109.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e3b426bf9ddb94b63146a574cb3ec79483d049eded7288f9d828b05c5f2a0634
MD5 67cbffac69479b7019daf71036be92ff
BLAKE2b-256 d4858eb9c240ac1fa06191794e3c6287288b7e340350172efce8404f64afa750

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5ddece59922acd22d5824e889e5abafcdac575032a827d66e435f7d8fb8043c
MD5 f1c681c9463f0bb5af745c986df10b10
BLAKE2b-256 6000ffb6e367142d2fc2ed8896eac01a415609297ab1987fb58b2f3b83d3607b

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 85a3f371b2a9c7313470b54e7f1b87bb2304b0abc20a0241f19eaead2c7f1f43
MD5 3dc92a9201cd61a38c37699c86d6abb8
BLAKE2b-256 9933f03d37be5a0768e1ee987d9886084c93410695ed83a58b9fadb156e2e3cd

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef15d84bad1fab94a758e3edb7365af7f1f3c244bfa7877009a43fd30b5388b9
MD5 cde0c3a969e767303deb0198baffcb4d
BLAKE2b-256 ca2d481e6d56cf7e72c56afe602851858a8d23e2036a6f93328faf2afa615a47

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d570e1c255ee05501f39ada012b045260cb7480e3e745cfaca3334aa8a144c0c
MD5 468da944cf47332640fef63683be0213
BLAKE2b-256 b1478bea5f47db08843991d6a3db4ed172963fdf01f3864e937cbcaf96b303c9

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e32fa87ffab6189ce2b9fa85c55f33626de6d96c397aa81169f168522416995c
MD5 258fcce828e455aa78c041c3a0ab681f
BLAKE2b-256 eac6f05cf93525f4773fa7f7803d8832604b0ea70a0eeee67608c463af56bfbc

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 732a52714f16ce0e6d49730445b3135a7c9eac9d74af24f2c9e051bd356ae1b2
MD5 1b956e88a142ab094f240dbd799e4dd0
BLAKE2b-256 0c5820d871119e0b4d4d4dd8d5d826db86c4ea9a8b30439103bd203cc1b72e99

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0ae25f64997bfe4586727a418ff773894733b20758dfaba01e63ebe51357c4fa
MD5 fb325caf906cc8c805056a885d081931
BLAKE2b-256 938e6c49f8e54833876296f89092be4a1b7e376d097d62ccee5f3a4ca913faed

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pywhispercpp-1.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 109.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5feaf77bf0c0902e4d50591d6757a6a8235ac40905b7d94d1d363abb7320f830
MD5 8065fc20d8039437855ec2fa1a0f5d38
BLAKE2b-256 6b0e0c7ad1c03bfcd0f0967191181c6193f888e5002bb4783dc53b31101687fe

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f06e003b4a1243dfd59609de91c93c60e3b8943db9ab1de8f82e2cc049ee7c1
MD5 ba93e5619e257c46b38b93e64dd3865b
BLAKE2b-256 041fa350d818e8fb61d911b69ef8d3500dd22a84205f49dd893385e1ee93a7da

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ba575fb119b7028eedd1be2accf24bfb01a63f867d64b4acb8fef49244c79795
MD5 5b6841f6231bec4059f8e0380cd8367a
BLAKE2b-256 213baa01c9f932ab53716a083717c5827b3e3eac3f431d87406dd771d4649cc4

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c643c09c46d36a5dd11dbac77e6c9e7b4d4f93318fcf9469f614a9e64c66a077
MD5 20f16ba0f4aac2e165a6befd285cfc0f
BLAKE2b-256 cda8eb1df2eb597eea67fedfc4950e220d2b58ca597455248236ba3daedc1c1d

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0726734e4f6b169e1188078625f1ba34758b340b2f9e21d01e16b2d8119fc722
MD5 a7f277aaff2342e3d291808e521e2966
BLAKE2b-256 d48a2bf26cf65b4f94492679bd4412db565e7f900e41b7a97d58c92cab3ac860

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a789328d24d4ddaf3a9195488bc5e777e1ac151f4352a8c88a9157d96bc7d411
MD5 b43827cf613383447ba27ad10ef3f0cd
BLAKE2b-256 f99940518d9feda1db7f8c7f5cbdda210cff208f11165c25c3ec45c94bcf68d5

See more details on using hashes here.

File details

Details for the file pywhispercpp-1.2.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pywhispercpp-1.2.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 09d64aae9890edc39962b557b25b19619b1c30d37a9558e7bcba3aba651ee1c8
MD5 bd9a4d807b0501ac01281778359a675b
BLAKE2b-256 ff3d32debf57168cc2728be541994d3f8a323d8ca40a07cea03fa17c63df0eb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page