Auxiliary functions to clean pandas data frames
Project description
Pywrangle
Library with auxiliary functions to clean pandas data frames. Available on PyPI here
Install
- Python 3.6+
- numpy
- pandas
To install pywrangle, use pip:
pip install pywrangle
Import
Per convention with Python Analysis modules, import pywrangle as follows:
>>> import pywrangle as pw
Missing Data
print_nulls_per_col(df) -> None: Calculates number of null values in each column and prints result.
String cleaning
def clean_str_columns(df: object, col_strcase_tuple: tuple) -> df: Master function to clean string columns using col_strcase_tuple key.
TODO:
TODO lists available in pywrangle functions.
- Add testing documentation.
- Missing data functions
- show correlation between NULL values in different columns. e.g., if state is missing, likely region is missing too
- barchart with number of NULL per num columns
- show number of rows with NULL in only 1 column, 2 columns, 3 columns etc.
- May like to include optional parameters to show correlation b/w NULL values in different columns?
- Print number of rows with NULL in X columns - optional param for desc sort by num NULL?
- Create wrapper that prints changes in the data frame size.
- Helpful when dropping is_na rows.
- Can create optional param to assert that dropped_rows = num_na before
- Create pywrangle documentation website?
version = "0.2.1"
- created init file for function imports
- documentation on importing pywrangle
version = "0.0.1"
- Init
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pywrangle-0.2.3.tar.gz
(4.3 kB
view details)
File details
Details for the file pywrangle-0.2.3.tar.gz
.
File metadata
- Download URL: pywrangle-0.2.3.tar.gz
- Upload date:
- Size: 4.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/49.5.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b966fc81a0fd5234a7415cebda22814bb4f695e26e8bb2e7c527666a9199d800 |
|
MD5 | 516bf37aa35f1d825a63cef9b77a4f94 |
|
BLAKE2b-256 | a6330abb997431c59dbe91e29075b2ae0360858550f0886d616964dc1772e8d4 |