Skip to main content

Code for weakly supervised learning

Project description

pywsl: python codes for weakly-supervised learning

License: MIT Build Status PyPI version

This package contains the following implementation:

  • Unbiased PU learning
        in "Convex formulation for learning from positive and unlabeled data", ICML, 2015 [uPU]
  • Non-negative PU Learning
        in "Positive-unlabeled learning with non-negative risk estimator", NIPS, 2017 [nnPU]
  • PU Set Kernel Classifier
        in "Convex formulation of multiple instance learning from positive and unlabeled bags", Neural Networks, 2018 [PU-SKC]
  • Class-prior estimation based on energy distance
        in "Computationally efficient class-prior estimation under class balance change using energy distance", IEICE-ED, 2016 [CPE-ENE].
  • PNU classification
        in "Semi-supervised classification based on classification from positive and unlabeled data", ICML 2017 [PNU].
  • PNU-AUC optimization
        in "Semi-supervised AUC optimization based on positive-unlabeled learning", MLJ 2018 [PNU-AUC].

Installation

$ pip install pywsl

Main contributors

References

  1. du Plessis, M. C., Niu, G., and Sugiyama, M.   Convex formulation for learning from positive and unlabeled data.
    In Bach, F. and Blei, D. (Eds.), Proceedings of 32nd International Conference on Machine Learning, JMLR Workshop and Conference Proceedings, vol.37, pp.1386-1394, Lille, France, Jul. 6-11, 2015.
  2. Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
    Positive-unlabeled learning with non-negative risk estimator.
    In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30, pp.1674-1684, 2017.
  3. Bao, H., Sakai, T., Sato, I., and Sugiyama, M.
    Convex formulation of multiple instance learning from positive and unlabeled bags.
    Neural Networks, vol.105, pp.132-141, 2018.
  4. Kawakubo, H., du Plessis, M. C., and Sugiyama, M.
    Computationally efficient class-prior estimation under class balance change using energy distance.
    IEICE Transactions on Information and Systems, vol.E99-D, no.1, pp.176-186, 2016.
  5. Sakai, T., du Plessis, M. C., Niu, G., and Sugiyama, M.
    Semi-supervised classification based on classification from positive and unlabeled data.
    In Precup, D. and Teh, Y. W. (Eds.), Proceedings of 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.70, pp.2998-3006, Sydney, Australia, Aug. 6-12, 2017.
  6. Sakai, T., Niu, G., and Sugiyama, M.
    Semi-supervised AUC optimization based on positive-unlabeled learning.
    Machine Learning, vol.107, no.4, pp.767-794, 2018.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pywsl-0.1.4-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file pywsl-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: pywsl-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 22.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.7

File hashes

Hashes for pywsl-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 46afa85c37ae4482e0f27af5d700293824871c29c0c03c3e66b6c8abca85ad62
MD5 0b101e8ca22ce31bf0119cb0b6ce783d
BLAKE2b-256 625b3db84cb99c12960160407c315cba4f083fc1c3113e3fa25a0f368b046c7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page