Skip to main content

Code for weakly supervised learning

Project description

# pywsl: **py**thon codes for **w**eakly-**s**upervised **l**earning

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Build Status](https://travis-ci.org/t-sakai-kure/pywsl.svg?branch=master)](https://travis-ci.org/t-sakai-kure/pywsl)

This package contains the following implementation:
- ***Unbiased PU learning***
    in "Convex formulation for learning from positive and unlabeled data", ICML, 2015 [[uPU]](#uPU)
- ***Non-negative PU Learning***
    in "Positive-unlabeled learning with non-negative risk estimator", NIPS, 2017 [[nnPU]](#nnPU)
- ***PU Set Kernel Classifier***
    in "Convex formulation of multiple instance learning from positive and unlabeled bags", Neural Networks, 2018 [[PU-SKC]](#pu-skc)
- ***Class-prior estimation based on energy distance***
    in "Computationally efficient class-prior estimation under class balance change using energy distance", IEICE-ED, 2016 [[CPE-ENE]](#cpe_ene).
- ***PNU classification***
    in "Semi-supervised classification based on classification from positive and unlabeled data", ICML 2017 [[PNU]](#pnu_mr).
- ***PNU-AUC optimization***
    in "Semi-supervised AUC optimization based on positive-unlabeled learning", MLJ 2018 [[PNU-AUC]](#pnu_auc).

## Contributors
- [Tomoya Sakai](https://t-sakai-kure.github.io)
- [Han Bao](http://levelfour.github.io)
- [Ryuichi Kiryo](https://github.com/kiryor)

## References
1. <a name="uPU"> du Plessis, M. C., Niu, G., and Sugiyama, M.  
Convex formulation for learning from positive and unlabeled data.
In Bach, F. and Blei, D. (Eds.), Proceedings of 32nd International Conference on Machine Learning,
JMLR Workshop and Conference Proceedings, vol.37, pp.1386-1394, Lille, France, Jul. 6-11, 2015.
1. <a name="nnPU"> Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk estimator.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds.),
Advances in Neural Information Processing Systems 30, pp.1674-1684, 2017.
1. <a name="pu-skc"> Bao, H., Sakai, T., Sato, I., and Sugiyama, M.
Convex formulation of multiple instance learning from positive and unlabeled bags.
Neural Networks, vol.105, pp.132-141, 2018.
1. <a name="cpe_ene"> Kawakubo, H., du Plessis, M. C., and Sugiyama, M.
Computationally efficient class-prior estimation under class balance change using energy distance.
IEICE Transactions on Information and Systems, vol.E99-D, no.1, pp.176-186, 2016.
1. <a name="pnu_mr"> Sakai, T., du Plessis, M. C., Niu, G., and Sugiyama, M.
Semi-supervised classification based on classification from positive and unlabeled data.
In Precup, D. and Teh, Y. W. (Eds.), Proceedings of 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.70, pp.2998-3006, Sydney, Australia, Aug. 6-12, 2017.
1. <a name="pnu_auc"> Sakai, T., Niu, G., and Sugiyama, M.
Semi-supervised AUC optimization based on positive-unlabeled learning.
Machine Learning, vol.107, no.4, pp.767-794, 2018.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywsl-0.1.0.tar.gz (14.5 kB view details)

Uploaded Source

File details

Details for the file pywsl-0.1.0.tar.gz.

File metadata

  • Download URL: pywsl-0.1.0.tar.gz
  • Upload date:
  • Size: 14.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pywsl-0.1.0.tar.gz
Algorithm Hash digest
SHA256 8404866b853386bbf432d59fb930ae68f68349b3e7a9b5e62f21f3a8fe4dbe09
MD5 f3f2dc0f2c822d4fa6a219f767ce999b
BLAKE2b-256 4c5f99b468734afef8a4bfe7b7cf4fdf96a38b8aac0cd04ac82920cadfe675e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page