Skip to main content

Code for weakly supervised learning

Project description

Copyright (c) 2017 t-sakai-kure

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Description-Content-Type: UNKNOWN
Description: # pywsl: **py**thon codes for **w**eakly-**s**upervised **l**earning

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Build Status](https://travis-ci.org/t-sakai-kure/pywsl.svg?branch=master)](https://travis-ci.org/t-sakai-kure/pywsl)
[![PyPI version](https://badge.fury.io/py/pywsl.svg)](https://badge.fury.io/py/pywsl)

This package contains the following implementation:
- ***Unbiased PU learning***
    in "Convex formulation for learning from positive and unlabeled data", ICML, 2015 [[uPU]](#uPU)
- ***Non-negative PU Learning***
    in "Positive-unlabeled learning with non-negative risk estimator", NIPS, 2017 [[nnPU]](#nnPU)
- ***PU Set Kernel Classifier***
    in "Convex formulation of multiple instance learning from positive and unlabeled bags", Neural Networks, 2018 [[PU-SKC]](#pu-skc)
- ***Class-prior estimation based on energy distance***
    in "Computationally efficient class-prior estimation under class balance change using energy distance", IEICE-ED, 2016 [[CPE-ENE]](#cpe_ene).
- ***PNU classification***
    in "Semi-supervised classification based on classification from positive and unlabeled data", ICML 2017 [[PNU]](#pnu_mr).
- ***PNU-AUC optimization***
    in "Semi-supervised AUC optimization based on positive-unlabeled learning", MLJ 2018 [[PNU-AUC]](#pnu_auc).

## Installation
```sh
$ pip install pywsl
```

## Contributors
- [Tomoya Sakai](https://t-sakai-kure.github.io)
- [Han Bao](http://levelfour.github.io)
- [Ryuichi Kiryo](https://github.com/kiryor)

## References
1. <a name="uPU"> du Plessis, M. C., Niu, G., and Sugiyama, M.  
Convex formulation for learning from positive and unlabeled data.
In Bach, F. and Blei, D. (Eds.), Proceedings of 32nd International Conference on Machine Learning,
JMLR Workshop and Conference Proceedings, vol.37, pp.1386-1394, Lille, France, Jul. 6-11, 2015.
1. <a name="nnPU"> Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk estimator.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds.),
Advances in Neural Information Processing Systems 30, pp.1674-1684, 2017.
1. <a name="pu-skc"> Bao, H., Sakai, T., Sato, I., and Sugiyama, M.
Convex formulation of multiple instance learning from positive and unlabeled bags.
Neural Networks, vol.105, pp.132-141, 2018.
1. <a name="cpe_ene"> Kawakubo, H., du Plessis, M. C., and Sugiyama, M.
Computationally efficient class-prior estimation under class balance change using energy distance.
IEICE Transactions on Information and Systems, vol.E99-D, no.1, pp.176-186, 2016.
1. <a name="pnu_mr"> Sakai, T., du Plessis, M. C., Niu, G., and Sugiyama, M.
Semi-supervised classification based on classification from positive and unlabeled data.
In Precup, D. and Teh, Y. W. (Eds.), Proceedings of 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.70, pp.2998-3006, Sydney, Australia, Aug. 6-12, 2017.
1. <a name="pnu_auc"> Sakai, T., Niu, G., and Sugiyama, M.
Semi-supervised AUC optimization based on positive-unlabeled learning.
Machine Learning, vol.107, no.4, pp.767-794, 2018.

Platform: UNKNOWN
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Software Development :: Libraries :: Python Modules

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywsl-0.1.1.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

pywsl-0.1.1-py3.6.egg (52.7 kB view details)

Uploaded Source

File details

Details for the file pywsl-0.1.1.tar.gz.

File metadata

  • Download URL: pywsl-0.1.1.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.4

File hashes

Hashes for pywsl-0.1.1.tar.gz
Algorithm Hash digest
SHA256 187b331f4cb615b8748bace69ef188921c16907c5a211940412f5aee6f66a7a6
MD5 525aad0f6dcb4c351573fef99b79632c
BLAKE2b-256 780d9d7bf118d1c68c02fb19fe196dae72249594191c55e587aa98f82350285b

See more details on using hashes here.

File details

Details for the file pywsl-0.1.1-py3.6.egg.

File metadata

  • Download URL: pywsl-0.1.1-py3.6.egg
  • Upload date:
  • Size: 52.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.4

File hashes

Hashes for pywsl-0.1.1-py3.6.egg
Algorithm Hash digest
SHA256 46d6389a7b220dea88d1c74fcae7317a972e5bbd6c62c3b09a4b0e25c5254707
MD5 0282fc3ebc9a793ae7ac104af61a1e7e
BLAKE2b-256 26d9a3d4bd821bfa8d54cf99ffbfa9a2249db4ad7fba7324fb0aeb09707e9e09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page