Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

pyxai

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring formal explanations suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). PyXAI generates explanations that are post-hoc and local. In contrast to many popular approaches to XAI (SHAP, LIME, ...), PyXAI generates explanations that are also correct. Being correct (aka sound or faithful) indicates that the explanations that are provided actually reflect the exact behaviour of the model by guaranteeing certain properties about the explanations generated. They can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). In the regression case, abductive explanations for $X$ are intended to explain why the regression value of $X$ belongs to a given interval.
  • Contrastive explanations for $X$ are intended to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

PyXAI also includes algorithms for correcting tree-based models when their predictions conflict with pieces of user knowledge. This more tricky facet of XAI is seldom offered by existing XAI systems. When some domain knowledge is available and a prediction (or an explanation) contradicts it, the model must be corrected. Rectification is a principled approach for such a correction operation.

New features in version 1.1:

  • Rectification for DT (Decision Tree) and RF (Random Forest) models dedicated to binary classification.
  • Visualization displayed in a notebook or on screen, and now also for time series problems.
  • Enhanced compatibility with Mac OS and Windows

New features in version 1.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
User interaction with PyXAI.
pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.
pyxai
Visualization in a notebook of an explanation for an instance from a time series problem.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, LIME, ...) to XAI are model-agnostic, but they do not offer any guarantees of rigor. A number of works by Marques-Silva and Huang, Ignatiev have highlighted several misconceptions about such approaches to XAI. Correctness is paramount when dealing with high-risk or sensitive applications, which is the type of applications that are targeted by PyXAI. When the correctness property is not satisfied, one can find ”counterexamples” for the explanations that are generated, i.e., pairs of instances sharing an explanation but leading to distinct predictions. Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.visualisation.screen(instance, contrastive_reason, contrastive=True)
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyxai-1.0.13-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.13-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyxai-1.0.13-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.13-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyxai-1.0.13-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.13-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyxai-1.0.13-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.13-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyxai-1.0.13-cp312-cp312-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp312-cp312-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyxai-1.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp312-cp312-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyxai-1.0.13-cp311-cp311-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp311-cp311-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyxai-1.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp311-cp311-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyxai-1.0.13-cp310-cp310-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp310-cp310-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyxai-1.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp310-cp310-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyxai-1.0.13-cp39-cp39-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp39-cp39-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyxai-1.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp39-cp39-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyxai-1.0.13-cp38-cp38-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp38-cp38-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyxai-1.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp38-cp38-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyxai-1.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp37-cp37m-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyxai-1.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp37-cp37m-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyxai-1.0.13-cp36-cp36m-musllinux_1_1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyxai-1.0.13-cp36-cp36m-musllinux_1_1_i686.whl (13.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyxai-1.0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyxai-1.0.13-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (12.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

pyxai-1.0.13-cp36-cp36m-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyxai-1.0.13-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57fdef65288f40cfbb7e42be406cb35699138b6fd718723bd320bbdea0d43f9f
MD5 9966f4549a2287607fba71287acebd5c
BLAKE2b-256 3531603e15efcceed022d881699f97115ce95b27cf62ac364b8efb63826beaec

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c21a40a780c2ed0d865d3a91d4ae95cd4b4d8da8b610ab65a93b25fbf8dbecc3
MD5 5d962cbabd7500b805eab0e7f2a6c36d
BLAKE2b-256 08e127df87eefc5cd9a702965182447b594092c0e96a9976c474a7d340766fe4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c970e832999e5f8e3a6cadec7f88267ee2400204657ae9d13efa3c3689a61f18
MD5 8cf1444c96f649c2cdb1e20003229991
BLAKE2b-256 0608ce93d872d8ef98f9071dd55b92e4a31288e8c6ec1234ba5be923dd89ecd9

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1841e53f9e503314cea4175a56682ee100ef4db19efe175a115f8ff14b9e21d6
MD5 fe6e126c092f111498cc8c258c7592bf
BLAKE2b-256 d2d8daeb5b5d800d92603755a6084e7241f5a6c6578d09aa8aefb731b77f1b06

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 48681ab7c75148164ced4780e3ecc0069caa2b014ace552ba8032e1183605404
MD5 0e452612b5b9b9a5a84ad79f2a534a15
BLAKE2b-256 e3ddca3300e5bb87e51da4722ee065f98bf87537ca2b7612074e915b09ae3c4d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f60a23d926cd24a2b818a30eb85792cc2d6f064c6ca54e3cc2bf533b3323ef5
MD5 43ee9841d1a0d5ad402be5848997ef2e
BLAKE2b-256 24168a44aba63ad44b2e4c9c32da296e1b04428795c3e8414691d46f4c112386

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 356b0d6ed77d02a05b2558ca6a9b13b118b90707b3e84e78333f688b4287b5e8
MD5 87881383eb9f0530cc4e89fd08ee6ca9
BLAKE2b-256 0894e65356130d3d04d971f215419e7fb1f6dd5e6d83863292c6b1af5ae6792b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c95f807b7340343d19a83955c5dca10c746371b0923a92e6443f27ebbb85b12
MD5 b98a271b9ae17eb7505a115905004aea
BLAKE2b-256 a89a8a764134117e5434025e0769516544717a1cbe29c31544540f2aa795d529

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 468458e5a4b6b205f12907b51ea2ec629b3498fae9ea40a115aba0198b95f808
MD5 2013c6d172b701533144776ccd3c5572
BLAKE2b-256 0ee13a728279e3a5d4cd80bd39f108a7410a3269d0777c6f7600baf61e4363b9

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfcbe126703f39bd7edac5f12029d7a5be8f08641f12aa7ea0b7c8ae0fa0078a
MD5 4292a45e2389e8a5a589833245a20f4a
BLAKE2b-256 a72b38eede48527742358b0ba870c27e0d2b3bc949cbb522e19067ac26959087

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 efc1ba8081ec16a0aab1d091262139187549b7c4261b77c8d5c41c34c2a9fc79
MD5 1563b6e60a704f477283e262c10cb156
BLAKE2b-256 336d868c813dfbdecd451fd8d99a8b4ef5f536d3c19317c49b4424f4c8c1cb97

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68327fe43e9c8745dc43a128f4fa81c842141da6a6e372f432d81a2db13000d4
MD5 96bfcfdd34b0f7ea7d874f66ea4f9bd3
BLAKE2b-256 0b32991ecc7cb54299b61f1d8e21ae27a88dc80d6ea48f2b3e110b91373126d8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dcdee7b32d8f2db1e6f964703c04aad2617dfbcd4a367aea58e9520183f3715b
MD5 5982947d99cf2f7778dc856945598098
BLAKE2b-256 570db29b2d225363a72d26b9559f420639dbe8f6749b0af2584735f5b5b295aa

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 04bb184bb96d5c27d5548eba9c09e753d47d93f31dba6071abe1dd2946e8c190
MD5 e354569625614a6805c96c0c602959c4
BLAKE2b-256 0a702856d415f283487bc54d85c37b64719916cc75e9d4575f442e2644e47f1b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff679f51d672275a19ae58dca48ec0fde4e273ca1bdd00428e17b4073b078961
MD5 d7a739f083d7b6e3fc35582d8a55033b
BLAKE2b-256 60cb8cef8cf40e76513cc3eddf85095e2f685f5f16f7c9ad900d5177a4325519

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71f09dd94444166ba51af6f83e4d1385a443e60dd9c026462950ed18d7d71c9a
MD5 9ecc370562253664cf889e325838df0d
BLAKE2b-256 518734b99916831e9807a0373be5bf7c608aadd62429f03888e98bb2e0d6310f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f1f62d8aff1b6d61c063165841fe154f5700aa15fc19ce884a07b471e6585d7
MD5 e1cafabad584497d67d663caf844b584
BLAKE2b-256 7906b5b564a96e772b093c468435f41c6883cbdc28766bc617af9e3a47549864

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 23c31d124e914a4344bac805717e0b9acfea2d20d1100ccb5f0b31d1e5d1f722
MD5 497d1eaf5bf5548da0f8425cca15eaf2
BLAKE2b-256 83c276e26afb1fa5e40bbd9963059ed7a6edffbfb54c7067c963efc8060325ff

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5ad90fa0bae196f567df96165d6fd0d280212ccb36a445451dba544d4df524ac
MD5 43b755ef1c4c2f01c601b11fd0d57583
BLAKE2b-256 4496414e9ecffba2068cbc088eb7f5b36c94eec1b86af5bb368cec8ccde1d0d7

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcec654685ede607def0d3c921cbc3cee4b853b23665fb965ad2790b50adadda
MD5 19400e2820a1bc2c9f45b05f439ac05c
BLAKE2b-256 97ae34e1f34b366348e1225f05911b1b88c66aa1ffe911c0c8dd0ab8397a6768

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9fd6020bc1fe3a97f377691d1d0feb0b53ea2e783d009e896a4a0d8700c8f7f0
MD5 a42b010b5cd4db40488384274fee1dfb
BLAKE2b-256 286c2db7faa3bc191cbc5a945649cb20f4ec5ce7da8d17fe970d8619a5db3ddf

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f33262e3217cbb156729603880285af6264d3e4c27c9fd1896d634d31b17857
MD5 6485b5e86a8e3170ec2facacec5548d2
BLAKE2b-256 f86d6dcb5f8eb06230dbb9d7998dc50447d4e2699778cf2add73b8d7b1aa4319

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a278b28f3ce0b3d6fd6213b490c0415186a84799135ee7783f8987e9dfc00385
MD5 9707b574c9ed7e90c2d5cd2cab3f99d5
BLAKE2b-256 89796ad56adfb8f31cc65b78dc54272134f71b8564e8d4c3ffca344d40979f8d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 60586069a631077b92715ff907ba2b5354edc7debdcf2291dcfc6d4f38f9d6a1
MD5 d317f74c94a721cad3810cefc4579426
BLAKE2b-256 50ef44ea1264b18469de16ca62c25af7f0cade9c74657344a9e91337f3bdbf1d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d67956e475a77f33393312ac641c3c0109b5414351954cbd88d03ad49516d4cf
MD5 de9a6208f573960d65b972f046dcaf6f
BLAKE2b-256 77cf15c9bd38d613768898786b678cb747f3a46bbca9bbe33b3673a94e614da8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5317a205158d3bd298fae129bcf0c423107bab015bd94a3a09d62036677e36d2
MD5 acea2d5ced477c0cdb3b7462f889d260
BLAKE2b-256 1a0fb3ad08663dcc2fc71552325abfd614eb7a11b5fc24a68f1c77cb199a9c8e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 560e249b2709394c60b0439be641602a1f1fa7bce8f1b12167c1302aeca3a2fb
MD5 410ce4fe2672d442c36920ddf2192e1e
BLAKE2b-256 8a32967c83bc0844c2fa911b91e4ced5ea3cbde8dd9527803faccffc7a35ad5d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cb8127e37d3ec5ed0cc63ce89cf534a427d723b2b54ad3cdbb9044a542199300
MD5 1ef40531611e4aa6da5fb204314e25b1
BLAKE2b-256 0d45d0252427a903295992b1c2eb16b565cd1bb3a3ccb6c88294dd756a3910a3

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 487d60b432aac1937d89ca7d758bbd3ae4c97c2958e577cdde176cb273a9687c
MD5 029c3e15be519b6b1be1c68eb0818b14
BLAKE2b-256 d6cbf0701944ee75d9d4d82e633766114a34c4df0dbc74bc1fe5604e0100e4a4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06a48e47fa4df5407dc5739e3435d7dd61120505043bbf47694598e7ba1266c5
MD5 6468f5e8082da79a56690cd846e3ab1a
BLAKE2b-256 84c56388ed48626add45317b0bb6cdcc74026b4b4ffd72e6589f5c0eb6846d87

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 98f1ed90f3311d96ba7e27375b32979e6cd3f61d671cf8bfd9c8034da9b27aa2
MD5 29b61ea3eccf7f80d0c7589856328ad8
BLAKE2b-256 3d1d36f1f3ce9beab9e1658d803d2b5f75cbbfa9dfe87a722710c9ca734d0d64

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e959e0fc7ebacb3370875c3f767f2546bb45aafc686b85eb2f5076fae8365b43
MD5 895f47eda17ce267e571ab31f72a4acb
BLAKE2b-256 f008d080405e12e0c73bb67b38789cdf98643fc6fe5b24ebe9339f54d7dffde4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1522557e6398e2f3aae03194dd564e67cd1f2491fa79af6bcfac3a57f63c2a30
MD5 3b70eb199997539fedb7db809c0050c1
BLAKE2b-256 4504bed8501a34adb9c8b33b38e5c2c441f6b93389b0a836c975b43407e71288

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f4b90c495f17bf1be4852541fbc680440ec452950468954062b7c8ca225e66c6
MD5 d88baabcbfb08f561c9aea5f3faad717
BLAKE2b-256 43339bed3fc9db9c4a7614b346931a8f4e8402bd2653a642c3b3054c143d4545

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9954614bb216a06e61370711cb0059f3584f82b99fd99384c119878796b9470f
MD5 6ad50cfd0141a9c328a933f03cb30f5d
BLAKE2b-256 a8d35ea290c88e8d66c72457535c2c6496d34ef8ea6b0fe7458ea591f9a7026b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a6cee5f6e68a0b205449b22a1f1f8d15d90caf5fdea78df61a382b82d6ef783c
MD5 9368cb0b5dd381d7c88ed380d16bd2b5
BLAKE2b-256 d2d5d5f845322fc23775641ef294aa5017225f87cc341ba3a036af352114fcc8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c2dba17fc0107a8397dda9ab9907152d501ccb489aaf7f60f6e4f1643d86581
MD5 4e24717f0583feb882685cecb71e5e8d
BLAKE2b-256 55e2b62720205e41fb3590b93ac068cbb250ae9f44f804e575ae5b695368f201

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c478857a09cee0cda35091f2b3e29008880e91c1f0a6b0a02f1cae79fef93ce3
MD5 c9866c3ab33bd7a7e05f51a4938ed007
BLAKE2b-256 6f70a1a18dcf874a4d95a6f3a944dcb8b5a0b3047edcdbb4e05fef61a90a74d3

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ac1b7837bb31ea2051d8edb0e21c6ddb6f1d8d81b1ffb6f1285605c3cc0c38e
MD5 cd4d9ac2299bb30ca0debea572395203
BLAKE2b-256 8129c5cbe307828424a346d92843628ea7d6e2d445b53bf6aeff096b62726ef6

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99d977bd68b6a875f9af2d616754ee8dcd56bb0c860a35eda4402514e1701212
MD5 8f31429cef3be75fa8dc168a4a9286d3
BLAKE2b-256 bed331a885af9b899f461dba07cdecd97a34277bedd2931366829700db2d83b2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 235b35bde25d2ee3355c59afea11c90c03397a5855fb7ccd8665f62b36b73bf2
MD5 898c1158241a6e45eee64b48b9ca8921
BLAKE2b-256 9993aed42b3a73bd652a1e3720d1cc264c57a93439baf21a7d09e712faacbe2d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c2036d9b5abdbd701d08b2c526b710e200ac2636a46706812e4f6efd4ce7da6
MD5 f54fe7489447dd1e5a64dd3cc5dfb3f3
BLAKE2b-256 52acb500477e85ef5c2ac3df499491c5b1b040d9094061db5b3ed5a7f149a0e9

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 496ff6dc788a1650fe7a8c7ab65df40401409c0acac0076815b0d77ce303e336
MD5 2882575bcc61b7eb0b816dec01fae7e4
BLAKE2b-256 b471fb0a2670779013a91bb81318d4217b989ec05f4bfb24961ad4aebfac119d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f3e39b8b24376c797da4499ef647f148e851ecf51c8e1129949655fd3389bc75
MD5 ef27ef80ad50b28df8cba4a88f3e8825
BLAKE2b-256 4db31626b8a6ef625439b5e7fa29ba9400cf70151cc590dab1c9ad93c523d688

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8032721138078fa4cf7f44bfe5f7adaaa39efbe0f16b7f36e8d350fed249c71d
MD5 4620ddbdd568ee6d3c1ee126414fd37a
BLAKE2b-256 589aa369fd6d34c8d808c046db3b447d8539a1aa9e0742cf2c34727b95497e89

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11ae49596b2d3cb2d474e69de0357f07f3aa8f8d93c8361be0d9a8cae97beb8b
MD5 46b6f796defb2b59fd7cd89c050c59b0
BLAKE2b-256 c8a8da15dba454e2073cb616187618838634c08d21be0fcbc5e7336c3ff1df35

See more details on using hashes here.

File details

Details for the file pyxai-1.0.13-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.13-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8205955c3f40242c8b8c0928a165dbfa9e279153739aa0c9a47865ff58cca80
MD5 b4534e616e18ccef31fca6bb2d509df5
BLAKE2b-256 1eb0ac1eaaffaf9cffac2df7c206cdefac4746878a197b60a25a1022d85c84ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page