Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring explanations of various forms suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). In contrast to many approaches to XAI (SHAP, Lime, ...), PyXAI algorithms are model-specific. Furthermore, PyXAI algorithms guarantee certain properties about the explanations generated, that can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). For the regression tasks, abductive explanations for $X$ are intended to explain why the regression value on $X$ is in a given interval.
  • Contrastive explanations for $X$ is to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

New features in version 1.0.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
PyXAI's main steps for producing explanations.
pyxai pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, Lime, ...) to XAI are model-agnostic, but do not offer any guarantees of rigor. A number of works have highlighted several misconceptions about informal approaches to XAI (see the related papers). Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

  • The installation guide and the quick start
  • About obtaining models:
  • About obtaining explanations:
    • The concepts of the PyXAI explainer module: Concepts
    • How to use a time limit? Time Limit
    • The PyXAI library offers the possibility to process user preferences (prefer some explanations to others or exclude some features): Preferences
    • Theories are knowledge about the dataset. PyXAI offers the possibility of encoding a theory when calculating explanations in order to avoid calculating impossible explanations: Theories
    • How to compute explanations for classification tasks? Explaining Classification
    • How to compute explanations for regression tasks? Explaining Regression
  • How to use the PyXAI's Graphical User Interface (GUI) for visualizing explanations?

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.show()
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyxai-1.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp312-cp312-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp312-cp312-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyxai-1.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp311-cp311-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp311-cp311-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyxai-1.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp310-cp310-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyxai-1.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp39-cp39-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyxai-1.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp38-cp38-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyxai-1.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyxai-1.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyxai-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyxai-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyxai-1.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyxai-1.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

File details

Details for the file pyxai-1.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11257192f56322a2d72845f903c0939ebb9f45504a5e9422d7dbe593d3c8264c
MD5 93a72cf00c666af506a08e7f8ccec8c7
BLAKE2b-256 353620f47d4e0858df8c3d91cb13db7285538dc42746048f9caa074b931b5a11

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e70096f3f5f1a2b6dc831db861a214f058f182ba7c9489ec1c2788caac1731dd
MD5 aca8ff4b03ea33387d57b4e445ed28db
BLAKE2b-256 8a4f95744ccb435950cd636416a87b079b70a4132b08e250e8e225eecec9ee76

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcd765fa5edea45cf80dd14f38fce66f6db6cfcada559768e1ba61f124223114
MD5 3c1c867ce7b9d4b22bbd55a89b789816
BLAKE2b-256 0c24ba7d4550c77177f94df89509e5d5df899d7f4cc38d690563a64ea2f3541c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e38c798e5b62ea58f7c24275505425a13f5ae723bab968f25bf8680d4cb2396
MD5 c33096d16a12480f4f5f5f5ab7e34080
BLAKE2b-256 0cf6b2ce723b44da826925abb17c4c05a193d3b96018766063f5ef55ac7f4c55

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f60ee51ac67f6a48b92824f559dc0864a6adff6368a0968685c69fcec102558f
MD5 379f41932a0c988b661f5603f019caa7
BLAKE2b-256 7703f166e03f9ff639df55f1bf4b1fc47621d6f27906dc0d6cf89901bc225f0c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ffa7a13b323bb9d3b9e2ecdc9a8095684cfb8203e01dc9ebbe97b4459bf9557d
MD5 c122f7f5ab82fb5c152af08ebaf34cc0
BLAKE2b-256 e12ea33e778ffb3c9ef5cf54b69ec194027bea4084d1c84b7d08f37dd990efec

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f064eb3594a51cb545adededcdcd4605b3f07da29007257792d125455d520d5e
MD5 e31aa97683d91d103e8ee0de40f5a2f0
BLAKE2b-256 1b84a0c99fc2f55b666788d5aeda07abadbc33602e603e4cf53d97c89148b0bd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e495fff5890698b7a90f8ec3fddb69afe48eb532cbfa241bfe4fad4e2b09da69
MD5 b9e5d370e1cbc98704bd82740e5a6146
BLAKE2b-256 6ef5ccf19c2048ae2ebe728cc384319fe5feaffa89201e27fc4ff5a0ce6a96c8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 656811669a32ff4c362d1ecebcbdce05a7ae2bc4a443696a7fa20895e299d434
MD5 c94e763a7a394328dfeb65388ab32178
BLAKE2b-256 ddc5d33e4426bc2a00c2401f614f3fe4cf838f97869dccb0e05c3da4ca379aa7

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 290b66c704d0f51c5d8dfcf9709b709d1f275a51b3e5f7454e73ec9444ed160f
MD5 911ab5f2aa358b19d54b6c5148c9cbb8
BLAKE2b-256 1f583c7de1e8ae0969d369b3e591bb053ee5d56dd59bd25716e2d619b122f4dd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 734d799a98eedf646114c2b74ca33f885657a57eb5bade3aa37835139457b5b0
MD5 267777a296512ccde03a585f95afd3a3
BLAKE2b-256 25f88a6a670b3a0794d9d2d03618cee7f0204482f9205957a1b2cb12e93b873d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65148b7c24ea9331d284ab408a46740dd0bea6cc0d0e596ce52384803f27cc89
MD5 899e9479aa1add96b8e32c3f5245f940
BLAKE2b-256 9f5731aaab8aee784ff736e96bd1ab8c3befc7d7584c57e81b6b7704c3ab2f46

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 711eeffdde0aa6441408ce540b065116faa8ca18eadafa6714f1317c6af50993
MD5 c985a427bc580be7d542682ad01321cc
BLAKE2b-256 9b52f99768da4ee547c05f5266cc0e76c23734a5bcaca37e62429be08c0d50b8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8e2430d8ebcdfff56cc3f2b4ccc5065f884e1d3dfabfb500f45edccb91a912b4
MD5 55689010145c3040364c2b635840b6de
BLAKE2b-256 edd11dc763599452f6acd8bb32353bd841e707a25b6e23b617c10a43055f1b01

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dde0df2c7f673280d265290aef5b22415c68a99bfaabee9c4f4bcef32c2ce063
MD5 ea0d5710c2b4663e91edc0bd85e7e859
BLAKE2b-256 3f6b54fdc955d99a97c68d966f83d059b5b7d6407ef455ebef68a83669f27fdf

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be032fa1560da69798dac85cdd578ba7c2d8b17c5629ecadea6e7ea9a2b5546c
MD5 b5d0092060f8a09021df3d90ae9c924e
BLAKE2b-256 981bed804c42d6378620101a3e5bfb0f2b2ccecbd4ae5704f9b8bf89fe256e0d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e30110220bab9e37f7612f1c9435bcd41b4120dd08daf4585842fe5711e10040
MD5 779cdc061967afea039ae6f84572bf82
BLAKE2b-256 ec143587e3ffe3fc3e3d7c4b21cdc7185a63fe7c618c08051ed35d6d5b940dad

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dd3d594d79aabfce36fc9abbdbc07a00c1cd0ae533a7610c6ea2447d78d5a85c
MD5 8ef5483df62fe60baf95da08adbe0aaa
BLAKE2b-256 2555f4ef900491c24f14bb501fceb7da8ba0617fa4efb8580f9729114159a874

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4dbe6bfb83f8a5e3c68c3314e4517b040f3ba09130e6a7dc56c10a7d00c4487
MD5 8bcf87b282884989d3ad0c26d8c611a7
BLAKE2b-256 bb38b05507f20d3af716acd0b22d0988d03443363c2ea177f51126845a425e79

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c20c63dba7b0b3d7686ad075eca7c307f2a3cc6987d0bb0378e3d18375fdd3e2
MD5 fe71e81bf770dbc4e17d5bb82284ad8f
BLAKE2b-256 7a81c2a15eb9b2cf4362f294f965a48442536773613d31ebf95a185a37ed79d9

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6d4e1dd16fef0235a7a11aaea01807c78040f5aa15f443272651a2a88b2a5348
MD5 8ffa0a07afe759bdd8b2ce9bb8cb0012
BLAKE2b-256 070eca860d5d9160fead3b5d8b5bbf87cc533eeb298ca1a68e64fce388f8b132

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 36c732dd724538aca097b3d8c80f897b91f7f27a869cf77618cd90e4d03aa3d9
MD5 7c6190b9d28eca9ab455b7d9af3f25b9
BLAKE2b-256 c10d040ed664529e9b816a50b11ceb78cf369c3bba9f8c3f3e43cce16bf7b8c0

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb665120fc5ac9c50325a0270ae3a18a7beb84fc2d3ee3b96a98a7924a8fada3
MD5 42c1c119e55983cbced95e81d7b2a032
BLAKE2b-256 d48260c9ea1b3fc3311ae108d4eda2752411dbbd82385471cd47a48a8ce4c569

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 28fc2af69c8f1222d902d7a3c32da96faaf0aca92b63b35542396bbe4be741cb
MD5 826d9975897cec025143e3bac8fdbe6f
BLAKE2b-256 52e7f6a8311cdac1498a7eec429ad24b6c6b63199b401ee6dbf43a46d76fbd4b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 432d38f9ef9a93d350f75e9fb9bfe1b466cbd1f86e4a420794b6f8f34c7485fd
MD5 cf03d00245f9b59854382631640e8d46
BLAKE2b-256 56a0a721faf80309a92778186b205f90e087c04c5899d037d570c06f0ecef6cd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9be7acde0e51505c0cd6d04e7da572b41e18954e3ad9d53b7d6e0b00dddaa63e
MD5 a897c863345b01dba91b80e2cc38e3bc
BLAKE2b-256 4d119fc730f48d3d2740ea5b5e144c1f9d77c2204f1066b0a58907a14b90f0bb

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9022a4abe216a6d4c5903b8d7606fc27a0c90c2d9701605427f51d777f20531d
MD5 fd29109612423c3fce5e8878212be28a
BLAKE2b-256 04ee150308c0353aca7ab3f7da248a2783a14bf7f8f19a433772ac9a184c767a

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e2f3020f7595f81cc898ac8ede09a462a39e05434be4548cea5120a76df8dc08
MD5 507d3b87bfe89b4ad39baaf2bdee7836
BLAKE2b-256 e8705b822a90801038723d2c5f1b5400d0e9249e3d6e9a35684f7b4f73da9d90

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 53e81bbac8457adfe58e4794d098d51cf8f45208967ec11676c4af0c28810ff7
MD5 596a7c08171e2ea08740e9e96b8f7c9e
BLAKE2b-256 4d2ee829829fef52062df8ba376438b649a04c0dd29d26daec1287be75432e25

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e0b337d8c0182d3e5dd997ae1b063fcf4ff9a4aa8682d2f0d56c1cc8944c3115
MD5 976c9ee0e71f7ab74c833d0931939a3a
BLAKE2b-256 2ef4546184b0bd359bf9b14e5b166ec5561f2089fe36a9c2ec008a891e7cd652

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e40451f8d553e86e7363311bfca9c09cebc6597ede0e7bdbba76e0bf20b1f00d
MD5 27050444a22aebb71df7935f7910001c
BLAKE2b-256 e371a248a4e57ab74ba86d93ef9f5356369cfeca3b267110dcc6747bb1fec2f8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a56bdd6456be6fee2a194c7b32c39f7c10500814b58a3ede4e08d75eb02d5d74
MD5 ca9ddf376986ef5f0379a16c2dd980ef
BLAKE2b-256 dee2ae597c12fb7b5450c8f435a23c158523556292a0226c40e7439da4fd7500

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3536dea5b2cb2cf3832f137362a0c26a9797a361d1805632e9e0e62f527e3138
MD5 276e902151e700b4d0ffc34eb2859460
BLAKE2b-256 16b05e41d9ee415a3bd2e0262714b50fb99d940e0dd7fc9ac86e71be81321357

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 94a6e29f486b2b215b41bc0518245ce133741eafd0739557c4dfb2f7d3b83396
MD5 7acfd2712308d341f3dd83d1d2e2ea2c
BLAKE2b-256 c8772553b4a6356a36a25e8cbe93baa693a8ba95b9e267bcbf203b65afcd49d4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94604a2877759b7f943aff6183323bb2704d7562873a48c3115aef2a623ec7c0
MD5 3a6d8f82a761d72ea25296c7feaf4242
BLAKE2b-256 69f32e579b803bcbc3ca4948bbbd31848cc10c3abb92bf93818a14de7711b44b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bf08a7a63072eccf16bf14130636b6ee1e682a0723dc08c3a7a935e8caa35317
MD5 b7a0c854b8fb0e69dc32e36e37272d5e
BLAKE2b-256 74587dee7741f489ad4a493b1b58a3f67e07d115023d252867dbb4e1ebd41aea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page