Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring explanations of various forms suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). In contrast to many approaches to XAI (SHAP, Lime, ...), PyXAI algorithms are model-specific. Furthermore, PyXAI algorithms guarantee certain properties about the explanations generated, that can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). For the regression tasks, abductive explanations for $X$ are intended to explain why the regression value on $X$ is in a given interval.
  • Contrastive explanations for $X$ is to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

New features in version 1.0.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
PyXAI's main steps for producing explanations.
pyxai pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, Lime, ...) to XAI are model-agnostic, but do not offer any guarantees of rigor. A number of works have highlighted several misconceptions about informal approaches to XAI (see the related papers). Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

  • The installation guide and the quick start
  • About obtaining models:
  • About obtaining explanations:
    • The concepts of the PyXAI explainer module: Concepts
    • How to use a time limit? Time Limit
    • The PyXAI library offers the possibility to process user preferences (prefer some explanations to others or exclude some features): Preferences
    • Theories are knowledge about the dataset. PyXAI offers the possibility of encoding a theory when calculating explanations in order to avoid calculating impossible explanations: Theories
    • How to compute explanations for classification tasks? Explaining Classification
    • How to compute explanations for regression tasks? Explaining Regression
  • How to use the PyXAI's Graphical User Interface (GUI) for visualizing explanations?

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.open_GUI()
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyxai-1.0.12-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (11.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp312-cp312-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp312-cp312-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyxai-1.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp311-cp311-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp311-cp311-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyxai-1.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp310-cp310-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp310-cp310-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyxai-1.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp39-cp39-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp39-cp39-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyxai-1.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp38-cp38-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp38-cp38-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyxai-1.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp37-cp37m-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyxai-1.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyxai-1.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyxai-1.0.12-cp36-cp36m-musllinux_1_1_i686.whl (12.5 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyxai-1.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyxai-1.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (11.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

File details

Details for the file pyxai-1.0.12-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d91bd2ee60b1242f92afc019f3ec9b016a061fbd40275d92de36a3110fa36e80
MD5 53e630d2fb66035a11f27286fff0f278
BLAKE2b-256 e1f68fc1d12bdd464041d3e27a1d546959890169c0737ab49a63d267fdba4894

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d57bb626944f61dcf4bd45cabe633af5066c939208e4c744383b1500d201216c
MD5 979944c2ce2f4017ec827c293e0e0adf
BLAKE2b-256 8d98f2867fbcd223ad7138d27cd41116bc82a117aee598848d2b6fc348e9c379

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e539a8e377c20d5dc43df451b0d0692a12d46dbcd940cf601194c89489f3b66b
MD5 9e175a6887fe99c33cebe1cea0817880
BLAKE2b-256 b50e5f59c63fb1ecc8fc3e401e187518fd6aad9e3d684b345cc6829c9c1063ad

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4b43be3f3167bc7a65c319236002ccf608ced9ca20df62a45fe28810c1321dbf
MD5 cac4dc161eb1a8c77a693759a591d972
BLAKE2b-256 555bd8ea5a995d29ccefe2688367fa132ae672cf3fef14d1ddfa08cfa5727d60

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6431623c3cdb325452b34d23c0bc3dc4c30e7bb63aa9ef72d39329647353cc7c
MD5 02843c38575f7ba97ca70f913735f7f9
BLAKE2b-256 8c54f34fd6bc6d31f136ba3a1c7d04eeadb91fc9e818886ca2355774481c52bf

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b64ed12cb958655a31aa7e3090b7de16dd32bd4d0dadc5c55388b1153b8e6882
MD5 08bd9d9d8b40eb84e363de905323885b
BLAKE2b-256 8c46dd6453027d7ec53070b7a362c97ecbe54b6c1008b35ef6c0840271479e89

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39e4c0f3b7e38667619137e2e19d1dfe1116650b37a10567136f0a0a246d432f
MD5 19b687aad66678feba90f1679b5cbe8f
BLAKE2b-256 692a07da710f4f232bd3454f74e9e096fe65d91122c6042ada429d4c347d06da

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d4012ca3c2d702340bf84f3fa1fce7f96cab8cd101c0a68f4d66696a1472a734
MD5 d7a8a60928738cb0d41a77d363a4386a
BLAKE2b-256 484541c41d73f4e08f76f56582c7a87d4c30e7ee0c1cdfb2072f3e776a8e2094

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b6644562a0864c0ba86540f0c286adf97528b7df31d43a272022cac205133445
MD5 70f0191e1a7e110e9948386aa6f178e6
BLAKE2b-256 d3bc39aaf5431877b11747932ae5b0d0afd2f541b143f4ac328233d27a0b1543

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 53785aeaa40f5b748c93f593b7ea4d3d5c94c2ddf18786375618c308431e40ad
MD5 18eaed81dfcd72a962193a997c1b08e2
BLAKE2b-256 a895286d273caaa82a8c4c45e82c48ee88d8564f987bde56bd05f0c960650389

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ac26e1e00338aa196e7269e72e366af629c29c7fe2eefa0bd80b723a9b4d3b9
MD5 f3e2f0aca3cd4e259cb2f575dc702feb
BLAKE2b-256 d26f7acfe547836591b8b0bee31fd2c213088691d7b6cc954fe6fb43ab05f331

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78a4076a097ac317d9502c3bb81c4ac716600b794b1818e6ae18526f3c1dc7f7
MD5 c2ba5cd16609916ae4ad6c3b63f1773a
BLAKE2b-256 cb526af44692de1ea98fc52bca477b4dbe75a50aac7d40ea0901f868bbbd75ee

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 59784e8926b325bffba6d9fd50dec4b42929a626c267b95a20d5cbf1dc55f6a3
MD5 9018e75dba02f6ed908b80796480b2a9
BLAKE2b-256 9692f4fe6d18640ef28a579a303212aeaa1d85c7d155214f25f86b9ad070d2fe

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 94fb811cb5300624e6ef54ae312a293495fd63332e829acd94c285e7d3d5fc84
MD5 1fc8d40933f9baf0bcf75506e22b9a8c
BLAKE2b-256 d09ca72b79d957b4b96768f6a9472821cc41ecca89efe484815ba91b1d2280f7

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1560a970ef0405d7258cbb02ebafc2464c38dc3060afa1696434731ab0399d1b
MD5 0413ab724a65d040eb42fd0600bd1e9d
BLAKE2b-256 528078f1b6ceaa427fcef73a9b8775ddceae97b5def176050d6f581d63cffb89

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 18414bb2d97c530052b0e620560aa03b91cb1688c24d4a2481c7d182d855dba7
MD5 abfefd4e1e524b90af26eeba048785e8
BLAKE2b-256 6798cce7bc8bf5c7e09669317fd25399f417ad743ec2a88dc856cea96e0a6873

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a36d75aa5bce1121a3e03e3930f01e706e66ad9edc89ee67c6e863a08e103c95
MD5 d425b0851ddbf3313ecb4c9749559fa3
BLAKE2b-256 df0af197fd301be33fd0088e43056654410b1173b3f442477a27cc9b711817f6

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 233ba0684867f6afb4b1b5c7b1296363bb5ec80a1738209e60af363b2269ef24
MD5 dc2b6c3a25711f60da580d55921ce456
BLAKE2b-256 874d2557ab45ad481cf383809f1e1706b92b0c72559b1186817ad95141e28e16

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c3f39c363118985eb77a911c15e44402a65c857a5f7fe78e87d42e22eb11324
MD5 a334a2baf5a928c4fdf6d4201d45392b
BLAKE2b-256 6b2d1749d933902da308ad6c628faa6da9ed9bcb796abaa682864e20b0b0a92b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 38480d7093d3b0acfb1adc9ba909fb256f8513ed3b13fb2e10e72e2f2934e238
MD5 a56498c694d5592662bbdaf059234a99
BLAKE2b-256 f977326315cb3a1bc57bcaf175bf5117c1975df367b058edd084b74f72875693

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 560c6f9ff0b16dc6357d05a909b6f41010d756945a6842565c260019198b25d4
MD5 18f5c176e35eed3fdf4a9994cfd57c16
BLAKE2b-256 5f79563043b0ba76797b83154beae037244eb7dece906378afba54222a95e65e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c719007024235ed0c4575ecc272af5cffa011047df1efd5fc1ef94292342105b
MD5 45ddad52238809e37958aa70c0ff467b
BLAKE2b-256 0e4e55df6fb55f44f5f7c4138bef808535b22d8ac00db145ae7371671c79945c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b39d242c5a4833f24ddb849d11713e60881957d621af01f46988b6e50d5b8068
MD5 a4d191e673b7e04a434d720ee49694df
BLAKE2b-256 557a248b3304bd5005a18bbfc3b43d19ec524dee3b0c06bd266ad163407f9dc2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2ff1d901da81ec947ab8b7cc49d89377eb93bb921f48fa68186c0e1efc01cd2
MD5 0f7978b50452725f6d8777b962b42c49
BLAKE2b-256 55e509dcd36f1d96e9818a219421e01e0c063a90be5f360182e243b68403e88b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 69e167073e5c362b39ecc6569ad8269bb9a7e21fbfb756d178a52b11161f4829
MD5 be67cb7e006a70bb67cbe67b54c40a2c
BLAKE2b-256 9b9a2341794b981b8983712c109adf2731153ac5fb7094848a1d747e3b5cc306

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ddc69cf787d667b262d54a1f0fdb53d1beead0b753c5ef629d6f22f0d2445a09
MD5 2e4bfce2414361e169a4504ab6f32241
BLAKE2b-256 eb8392160b5a335f6a349fd3e2649c2090ac0c8978393a1ddc5f297d3515a1fb

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2295abd744271294039ab832936824876fd38336612d1ac854e78f23b321b042
MD5 0b16506ba5a5e55968931be6543f27eb
BLAKE2b-256 7b92588cd6fbda30e7dc9238f029c1c8d8a7ed9ec520936c65636333a39eb84e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c083fbd54f647cd21dc695903c6cb57f9c2c1f12621cc9988876f406c1ada833
MD5 cbe8589e75dd2be0877b3f01dfd12f69
BLAKE2b-256 f9d3334f273a59b6b20bc6cd2497248ab65e23b2e699323aeeebe876c1a1836e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 443fce313c601fdcc37260935db1a81f54c0e573f5199e2ed3af6d2b96050b97
MD5 8b4997a9d0749690426a2709378c0df1
BLAKE2b-256 886e738f1b7a2db2db15fefccdfe5e46485ea7b75448f64ab213357ba6ed3a6c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c3bdcce067332080814d3b66cea8804f60f4fd0536b1deb61cc28a3887584836
MD5 b89193ec5fca2c9fb851b2880eea7037
BLAKE2b-256 765222c0d3099ec143decf60bbebb71111bf84b9ebe9fc48e04f1cb3c3c4b2b5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2779055c231e4f897e20916c9ef577391bcb6980b0f0b9a1c2719dbb2b7daab7
MD5 36d8ecaea4a4e753c37a326381cc1538
BLAKE2b-256 2d852d8f537815212681e879dea53a5d220c759cea443d3bd845c0b84e0bcddb

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4b24aaceef380f0ea21a74b1080cb0fd5bf4f23558d268932bbd992e937a2487
MD5 ced7545fbe6617a78062016adda13ad5
BLAKE2b-256 747f8f906278d20bd888ca96507e2ece022487ab33b051a7104eb7c7364ae972

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a47fda96146c6dfa95421fdb901828bd7abbfaf817d92117717d7c9814e69dbd
MD5 d663a8132d63c08a39ced3d146921a7e
BLAKE2b-256 e3bc7b4d784f81f403e92c4e6fb5c1f4a5e7cf74a93c93d508f758d13dae7cc7

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e22eed955c0d1f81a5451762fd1a68edb7de23029a49e62d991c2fc26fde5812
MD5 e7f2e2fc8faafd0400deeac4a658756d
BLAKE2b-256 559ca6844afd39a4d24fa34d501b68a7c81507cd3dd1a7d6b0f6aea840101f48

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a558ccbeb1c4856809afdee1f617835e61a5452ba883ad1bd276d020271115db
MD5 9e734205b2fd727ad7af95e6aace68a8
BLAKE2b-256 2bee8091b407a964f39daefec5b05c5958684ffa6c1a01a830c596b5e7f0ddd9

See more details on using hashes here.

File details

Details for the file pyxai-1.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9f3971fdfd425fe5093d519d6532d0a95f0ec4a184a66f0806fc729966ed3334
MD5 3d99828249985d3ee659e0202fdb906b
BLAKE2b-256 c1502b7b8769afdc745423292929f61cde5e2b812baef5b3447a76db8f7f0734

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page