Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring explanations of various forms suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). In contrast to many approaches to XAI (SHAP, Lime, ...), PyXAI algorithms are model-specific. Furthermore, PyXAI algorithms guarantee certain properties about the explanations generated, that can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). For the regression tasks, abductive explanations for $X$ are intended to explain why the regression value on $X$ is in a given interval.
  • Contrastive explanations for $X$ is to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

New features in version 1.0.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
PyXAI's main steps for producing explanations.
pyxai pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, Lime, ...) to XAI are model-agnostic, but do not offer any guarantees of rigor. A number of works have highlighted several misconceptions about informal approaches to XAI (see the related papers). Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

  • The installation guide and the quick start
  • About obtaining models:
  • About obtaining explanations:
    • The concepts of the PyXAI explainer module: Concepts
    • How to use a time limit? Time Limit
    • The PyXAI library offers the possibility to process user preferences (prefer some explanations to others or exclude some features): Preferences
    • Theories are knowledge about the dataset. PyXAI offers the possibility of encoding a theory when calculating explanations in order to avoid calculating impossible explanations: Theories
    • How to compute explanations for classification tasks? Explaining Classification
    • How to compute explanations for regression tasks? Explaining Regression
  • How to use the PyXAI's Graphical User Interface (GUI) for visualizing explanations?

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.show()
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyxai-1.0.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp312-cp312-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp312-cp312-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyxai-1.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp311-cp311-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp311-cp311-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyxai-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp310-cp310-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp310-cp310-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyxai-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp39-cp39-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp39-cp39-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyxai-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp38-cp38-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp38-cp38-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyxai-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp37-cp37m-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyxai-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyxai-1.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyxai-1.0.6-cp36-cp36m-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyxai-1.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyxai-1.0.6-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

File details

Details for the file pyxai-1.0.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25e880f6eb1ab387e3cbe555a44702d2399e389ec09e71763c747c8ec7fb90c6
MD5 9a984535d8b4125875f44f0138d6458c
BLAKE2b-256 a53a545ae8574474712d159e0a76372bda0a57fbe04422d9f0996844bf2462b2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1dc1ad8d4875dcfa630dc5dd2655a48a9671d18ea57a444a6ac140fbace07771
MD5 e2edef4491252f00aadf7227eabeabc5
BLAKE2b-256 a22b3ec37b8dd9b48ff62d0254554192daa5177b93ea74e1ce3972e9c84bb475

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e450aa8afe01e976acda0bef82acaa7f36e638f67a793aa7a2cab254d9a38d54
MD5 7c227f4cf4257392869114bc20c2154e
BLAKE2b-256 94579f5bf77fd76e8e6a0a0d1c49e92cba76798e1960e8242848c0497d9ae4ca

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c134b8c0114414e6418562bbda08fadf8f691b3f5880d537ffadb871a211b6f9
MD5 630a8309bc6e259667473290fe317245
BLAKE2b-256 b2807cbe1beb887b950283c2ac038795c84bb5cdeee439424dc48c128a8e993c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df2ba518ad9816f99157a7f712a22d3f9c830d1bb548c67875d1ba2c68dc7f35
MD5 735cfc11b02cb62f83c324b73495471b
BLAKE2b-256 a0739f9cf62d742b75559a2ee099a9f6b0ffdcdd67a9f114eaaeac495cc7fc59

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6faeb03e6b2d6efea86a909170520bb7b65fd2881dea261ec1e6347a5369ff40
MD5 14418d1b607ee6cbb9bccde67b1effdb
BLAKE2b-256 9414c554cb59249d867dcc340a99e77b1b20f125e3d5ef3ca8a672948a02115d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22598864de11b238b023cdc3c3e29691ff15be6af0d7499d6a81e763577bd53e
MD5 f7f063d5ac2cc155626b15c3e92b1978
BLAKE2b-256 961580cc8421dc094e5d837a072b6023edd8ba7c0effc95b41f8a839630b498f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 64cc76e872fe4150d2b48f877221fd987a9ad441aadb5a1d0ed50a6224d95fa5
MD5 50977f4d2aef05935a9ebe2d40d0f172
BLAKE2b-256 83bd19affb03a49d6e8538b4cbe08529301d5a039ef349056b6bbee5c46f562a

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 45bac0e62072ed3a7c3c3687137f2384389e6d65ba81b0d6cff1397b269a28e0
MD5 13c06d1ce8f4cb250f8c0a2fbb04df85
BLAKE2b-256 21555a19ad02b13a247d9e7cba6d152004e7f10d378955c88734a6fda01f3c12

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9db9498a45d5843ac84b31a397af7a436e032211e879570bdd2a128931e6b9e0
MD5 b70a7549b9503ba826ca133d2413ce19
BLAKE2b-256 e887a4535785a02db0ffce4876d4c703ef22cc8a6136e4d45cf40dbe12df7f2a

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e86d9aacc61be78afe6b2d174e625c80d408bac5159f9ac1c5d1be4906f4647a
MD5 4cecfd61a6bf5382ac2e05db461ca423
BLAKE2b-256 c6399f02a8ab4dd869ac8944ad190fe298029239e7d65a0793e0d8871a926137

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 475888efea71c154b54fc51fba56ef4f91f802334343299d6d7725de9be5a843
MD5 4da0e82e3deb5b80cd5444c478b3a4be
BLAKE2b-256 a7925008be011549201f097137c186491c836f390d7b36fe7b8f50fe966143c1

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 07f6bdcb046c1d18daa43c4154b31df84aa95e23120d3bfa06669681fd0ebb62
MD5 883be1a209e926b9816beeefbe7b73c7
BLAKE2b-256 341487de3a5d11fd958f7a5089250b9e34a6e5f39ca6c9f2c01a77a030cd9cfd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6c55974bd042dd260bd9078ed5f2acc617cd7e8c2e2f8c577fbeb75198150d23
MD5 ebce3f1944be0f9bc43ebf3a8ca5dbe6
BLAKE2b-256 e7ec91e6ecaef5226101baa91f79fa8e58196f6a28f347dd5316720bc31b5f28

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b552dae8cfa6687f5de813fcae245b8cab74684593d34682eaa72285afd073e
MD5 d3e479ab34bbfe5ed811b4d4b6ab996b
BLAKE2b-256 19765fbcaf0da7e7a97fdcbcf7390ffa47c250b2bfed0da5f767016a9bc8a5ff

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f36a1e6a3932e77412afee21f0983ca29e0c3ad91957fc9b9dd02c1c68c99942
MD5 96194cc035ea339c59efaf60f0dd869c
BLAKE2b-256 d6f8013fcbdb97bdcafd1082d28c764c969625c1b2af822caff043fd6a94d04d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f85733deb392e9b028aa39ecfbf2a4a29caacf807a733400b529404016d44982
MD5 1d1c07d52ce29c01891aa2549a8248ab
BLAKE2b-256 1dd093195f0a9d2358b132688cd53dc3163a5c61f108e3594ad5950287745d5e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 afc0c2b0b8b3e5951f4947f9af9bfd86ca17c7b39b8c16828120e7b040f71afc
MD5 8ab46da139835889feb8a3a218324616
BLAKE2b-256 f6e0d82cc34b6c87e5b8ddf9fc650ea5e57ce15eb4f96e26cb349998be029a0a

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e47587fa24933d550503f23ab57d3d5a7ee6d3b736b019a34bfcc000004d71b
MD5 aa15793c2cf61e5751577ab7193129e6
BLAKE2b-256 a689f4dae1a129bfdd437a6ce95541a39ff4bc16b86cc90442b148db4dd25bf2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bc0ce2f0ed21897cfa4c4e9e38e3c2be53c493a1f10d9aa420265f06f973aa8c
MD5 3e2b87e63fed7369d86a4bd608f101fc
BLAKE2b-256 1a11578b4d005e75fe9501b670cf3f77e8584642d0296e123908d3f0007b4e0e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5ae644d766bd020bc0db1acf1a0152b9aa3d4a784a0234d596856ed867721dc4
MD5 e1426e406ffd4a3c2bad8e77e14b17c9
BLAKE2b-256 34eef87a229d01da03ceeeb0627d61591b1cc91eb9c729795297ff573c631d83

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6d930b5a66f2d46d2b003531549f1918af0c5499864f44286fea6fa38b21fbf4
MD5 fcc57fdcabdfb7b01f01943cc755f5bb
BLAKE2b-256 ddab8f12a476f30f1ee31d412f08e28ed69327809e464cd7c56d09589bf0aef2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33fbae78d583fb9fa995e677e55f115f583429513dbda0f04388f1d8c643874b
MD5 564d3b632d699bc5e5fe14f5fcce894c
BLAKE2b-256 bee055e184d4a7c76e82a13c57acf3ff6c8900ae50f4d7db2b4edada1f91e3f8

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b014336e06fb3af465f8fc850da00c4edf7756aec33e68863d601c05f4a43c6e
MD5 986972d22377327e9fd5efd10b5594e7
BLAKE2b-256 d5545e81f921d174a942a74d1ff2e0ce3d50804a63bc6f288292f5ee1f4ac0b9

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb442e7b74ab4a49ae1652b0fdc20c88d003b2d4adbd20d2fade4e72159af9d0
MD5 d54d56574095a6a39f904c7babc0cee8
BLAKE2b-256 e8cbf410c0fbaa9ce1db39a9d2f19c916536442027d2f8820340c3db82858a44

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5f0aede24f95dc2c9a6925cecc87d7481fe2ad51056538da95f22a4a8ad1ce8f
MD5 6e9ead5018da06bb2ddd7c56a4ccf450
BLAKE2b-256 55b844afef2c562b0db8d6b0c8c19eebc4c6493f7b915418dc5a23a8bae7b038

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2a529e2007bddf0cd2675f83adbc511dadf71316860c31416b073732720ef85
MD5 0c52615c7f63bb7c4984216016e194e2
BLAKE2b-256 6a18acda54743e976b86f290e79d318aaffcd2a5061b43f042835e6aefbb1328

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 931df5ac669749145fae90410e135fc9d391d44cd3623548eeb272b472b4a375
MD5 6b7af17d73791d41009509dc20855c85
BLAKE2b-256 c1e3a6d0c30b45ccde531961191bc68440a0ec5fa5ff36b3fea1556b70a78880

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e666f59f03bf62a47beaeeeabf8fc31cf04b9b257718d78c8aa22cf986462c0
MD5 05958b05710e9a98f17cded4dcf3a5b2
BLAKE2b-256 ac1e558883867a1b09647502b1271c86c3c7ee163a62a2c62c905d913b87bcf0

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4db06814d3a3ca0f6ccf6209432b90673a9a9fb9abc895804681cdbebeb40e86
MD5 6e8ec8b94d7a9390a731a349ed6342f4
BLAKE2b-256 c8609c80efb42a8c6a6de940f4d1215411d29ddd5f012bc145398087b923d2cd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bee6ed536ce49fda06e9951d25788ae1aaa34fc23599b7994b43d93a9a4ce1b3
MD5 6f07c9a5392d4c3f08293bddc4a781f9
BLAKE2b-256 b24469810aac007de022ed68ac8a13132a971dd62566313e64da35e21df18c3c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 23e9f5b856dbf1f653e3926eb25bbc15c01a99e230effca9c967153e387e8ee6
MD5 d386f49cdfdbb433479a0715f6b84b33
BLAKE2b-256 de37c668cf6f9abbd32ce22a621fb472f220d5ccb90364eb78f62fec34ea358e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e461cb84ecb1f507ac2f711178de13bf1ff72e85771e684bbd0d16c1e87da74c
MD5 9bcfd8290845ff247ffd0977c5be4876
BLAKE2b-256 6c9e14e0ddaf46f50de4edca27b47559161e0dc23d8d13c1854413b35cf88918

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6d1496f5b00022aeddcdb63a9b3ff029578b5e47df419d0e65bb433489cf0e57
MD5 4fba67cedb96594f7b5342ccf91cbae7
BLAKE2b-256 3c6f355c586ccfe68a162489ce0b05eb0ed895ce58394f5b28572b6978638838

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85136c19f3bf589dbb771ac90f6d6931bbd3a707c913a9574b20d3b168ec1949
MD5 db0468a3a16e9db7cfc26765ebcfb0d4
BLAKE2b-256 37f335c73e06803f83b4ec4ddb5b69d6e539feb8482e8eab4ab52be3ca98f301

See more details on using hashes here.

File details

Details for the file pyxai-1.0.6-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.6-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e2a337012f327f47ab51bc22beb89dcd039822b7e0406d6a669ffe0a7b716f77
MD5 6892df61506d93b9c692dbf1be2470d0
BLAKE2b-256 5084350fca7d7e4b5c1fa37a3e917dc9a75ed846cc622680504d2f437a272431

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page