Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring explanations of various forms suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). In contrast to many approaches to XAI (SHAP, Lime, ...), PyXAI algorithms are model-specific. Furthermore, PyXAI algorithms guarantee certain properties about the explanations generated, that can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). For the regression tasks, abductive explanations for $X$ are intended to explain why the regression value on $X$ is in a given interval.
  • Contrastive explanations for $X$ is to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

New features in version 1.0.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
PyXAI's main steps for producing explanations.
pyxai pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, Lime, ...) to XAI are model-agnostic, but do not offer any guarantees of rigor. A number of works have highlighted several misconceptions about informal approaches to XAI (see the related papers). Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

  • The installation guide and the quick start
  • About obtaining models:
  • About obtaining explanations:
    • The concepts of the PyXAI explainer module: Concepts
    • How to use a time limit? Time Limit
    • The PyXAI library offers the possibility to process user preferences (prefer some explanations to others or exclude some features): Preferences
    • Theories are knowledge about the dataset. PyXAI offers the possibility of encoding a theory when calculating explanations in order to avoid calculating impossible explanations: Theories
    • How to compute explanations for classification tasks? Explaining Classification
    • How to compute explanations for regression tasks? Explaining Regression
  • How to use the PyXAI's Graphical User Interface (GUI) for visualizing explanations?

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.show()
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyxai-1.0.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp312-cp312-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyxai-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp311-cp311-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyxai-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp310-cp310-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyxai-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp39-cp39-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyxai-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp38-cp38-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyxai-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyxai-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyxai-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyxai-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyxai-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyxai-1.0.7-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

File details

Details for the file pyxai-1.0.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7d9a5a5fc3b614389b32b03adfabc33ce392b608647d4639b066c84e5355257
MD5 5a948c0666f30c9d0210059aa63adc73
BLAKE2b-256 752551c9d27de5bb6d7c519ca05d741754bf72717aaeb03cf872a7840d203806

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e762cfab427a654883b48c6bddba3d20c3df7f26395451acc2bd730d06b4f86d
MD5 1a2d1311769669563ef3c4c6013eb155
BLAKE2b-256 5d9656c0090c44056a0e307ab3e29c1c774eb234a6f770de27eb82068455e9f6

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 181d35684f19a92666953ac0fbe822436fab069f1699e79dbbc7e0df6dad29f6
MD5 db4332b3f1ab10aab4265ab217ec4b1e
BLAKE2b-256 1d9d2fd2d4ec1b429c32266d9599d6daa8c10944c2cc8f43326dfac9b21605c4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0011a4cf924741cc2680996b239d5e4311a071c4172a32b4b6f3e2efea28951a
MD5 905896e41c9efc6b6faa97235b8439c5
BLAKE2b-256 aef63c070165f316a92649cc3c71ef6788a02caa9ac1ce88e415431810c0e25c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57376286851072d8326b13911b949050762a1664d6d2a40d129a079580af171f
MD5 625e4de48e9734394a728e5008de63c8
BLAKE2b-256 ef51f05c004005ebc690812f8d596c36f7c4f1b7f0fbf99d240b503536f20efb

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3f5f58d0ecdf6476c6e1caa2c7d1fd86f987f69d229976abbd1fe0d524c9b354
MD5 02e22495a96ef0cc498f24c42c56db97
BLAKE2b-256 e4f117bf222e4863f4fc2947f495096efffe164d9eb05319ab1da8cbd79a1306

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6681f26eb592ea8db4008f7d1f7b57624787d6da5835640937aeac76a33ba460
MD5 3acca74d07f8287e2c75e6416dbde2b7
BLAKE2b-256 8637efd1f2c3480c75833945c0a0863cd718b8b133d33a093d7f587ff2be8bcd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 93a706f6dd6649c5fec9bdf8a47c899f05ec721baaf5f5688dff83a3bc482709
MD5 5bf1da18f183acea8c65ccab53943b90
BLAKE2b-256 6f8929e52ead2a9d397e2bc150993798bc8bd7ec691e96fec0247685986e5b30

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ccb507e62eaa2d84c1221f0707830a1a59fedac69cb18de84ae9cbd624e77f1c
MD5 899d1ce6ae1b0022ed6db54a9ccfc1fb
BLAKE2b-256 b324aaf95ef7904bc672cc05e5e55b48d3c5f03a8113317f58c1fdaf5195dfd3

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bc7c53ce499939bbbf819ca07bb804f129cc818d9b8c52ca896e87ad43b00a32
MD5 d663f07c03fe4a4541a6ba2f0c1783ec
BLAKE2b-256 245c003108ff5c386d8150f90751dac8a11794a75947caddc88d332fbe213cf5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a2450555270659a451bc956a3df57ff94a39a2e4fcd98aa5c31ef9c6041a6b8
MD5 a2c702778a2f538047539e025d6b6cfe
BLAKE2b-256 8772243aad0a68a7dad9c4854e8f4b3b6bc3d34085b4c003a032daa58d83bfa6

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a01fc3bcb520c4c4146df9eaeebe94da3bbe9790b0824fff126dec790291749f
MD5 e784d977b7b2a52e10517616d083ae73
BLAKE2b-256 8c2f17497b77c22dd880714615fc43d4f7d46e3f9122ac16ac0ee68211d8b48f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1c5f92cf42a68fa5506acde62d9acf15246270b00e1c06dfcf85b211a126d6ad
MD5 605c9baa56cff6e765278fb50d7681b2
BLAKE2b-256 ed104a440cda4854810b2619d1800158bac61177b7d6e22fdcc9c3bc8fd73102

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 54799a22b6c3e9232ca851c4b09efe5b0566620852c6277b7ab89b99a38fe4ff
MD5 1b576c540268595f33625675c6446276
BLAKE2b-256 e447f41bc451b8f016294f7a0610a0b642c586385d6b4b5641a30b01f5d7a51f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf23f615a223d5db81bd30609b583e886676ef60522a637a1c1a1c01ca74902c
MD5 d3b585ce37d53cb70fafe2e5ca6689b8
BLAKE2b-256 72c47f66f8506a2303e57f89a77b467231ad5209a7be1b8d0f7b9fa548d431fd

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2dbb050581bbff85512591e2a8e5c07b0cae0591aeae696c6fc8adce80dbef48
MD5 e8248d3137316ded08d0945bda8789e6
BLAKE2b-256 e090f53b9631c5bddc66ecbd55f30447e06983ec4199a805064c867bdfcf0f85

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea6685003f1113708b7334161916bd5b6c41e9dbd9853ecc2c36e5f955326b2a
MD5 fe87cf044c2d2aeda43c706954de77b5
BLAKE2b-256 9b281fafe47da109134406dcb6b28ea7fb72d62c4af04169beb23817a2c16df5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8fc3c1a6cdc27038dec83cc77a21e418efae81a521c07df835c33dd225400ba4
MD5 8ed63773dea20e585c6276489e3c2053
BLAKE2b-256 3c6af499762fd5221b8126e121180054472e79c9861d2ec8af0e1bd60f1ed24b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 220f62ae9516aaa583090e26af9d548f9972fdf3a666abdc39144518ccd9d364
MD5 563e7486ea7071646907394d42781efa
BLAKE2b-256 b44bdc7dd916db533d7b08961e2fe75f886453fc6f916c50830413adcf03d007

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e177862786c6ecc17819615690ccfefc5ad4d607ed53e66af2279f305c91ce6c
MD5 1ac05659e1b9bf11407e25298411cc25
BLAKE2b-256 2b50d1bf371a8c060d27b910bea6c9f652f3602aed3a4ec33ffb6319cedebd62

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 700558f7e6903ff6c3f99da7a6a9ea31435fc35c7acddc095484abb90ff30926
MD5 2aa865cf87ee2a561bef1f6d6db511f2
BLAKE2b-256 8bd504a7a38ab305af4b656c4dffce8855c611cd1b05a3cc3a993a1f749c6dc1

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0baba634731e55951406e74c8112e5406aab821ac6811b91376672cddc8e5ddc
MD5 598ac384bfe15b6ab564380dc7822dbf
BLAKE2b-256 57f7484efcf975f38e5ba429e4fb70a65ea20e9e83360a504dfaa3ebac33b5ae

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0031f6c3f255f695b7e009b3a2a6f5f0be8920fbc9bccd469f7490ed4ea9911
MD5 254d9fe5f76a0da36becddf899cf7550
BLAKE2b-256 af2ab18fbde969856c30b85a00e9f39b7b23da8f4909d49fd3373a8fbb4af21f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8f559249624678341a7b68559082636f8b62174a3b21e80538d91b0dd2752e8f
MD5 3ca5dc52b70a045b4005b687e4e5086b
BLAKE2b-256 e6cd2076279126ee438616a9c1e8fe57b9c6fd53bc716022ce21e7acc97f580c

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c163db44fe81458cafda8f55bbe3429df10298adff926e45414ac8bf6ee099cf
MD5 73f186071c622d8a24f811c7e24c9b4b
BLAKE2b-256 25d37fd0a10fa7ab2d99ff1727059d95b049beb898d04537a973d4c54a4ef43d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 040e9671c91bfb178e6aaa534b63eaad9facee9a83195d17f224f01f52e1e1ca
MD5 4517ff2688ddb4b7a587128a5f639fe6
BLAKE2b-256 c215c40e94849094646542420519fb083e25c4f6393b067304516f9c69d934b5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58dfc6645eaf3098a6922c6819688b930b84e614c676093cb2b754a4ff5ffbaa
MD5 190ba9c43f08fb0497781e2b60e57595
BLAKE2b-256 18f7c16cc7d88d02a1f72771cf4cb15307a21d8bd4106ee14f25161dbf576f04

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf87462c4f706a11079d17b6e7d63e81a48c2f8d0f78af2906215db38309e643
MD5 77dea5f0123e06c3b22ebdb84412c698
BLAKE2b-256 3a8f0b1f285e8205f185a680d1c5cfedcf1ff0a67aeff2870e97ab1d7dace9b5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5c1bb9d06017f71ee5cdeaf3b4e1d621a7e5f884565a9ef85eca338f08f82bf4
MD5 6c8203205342fd04b62fdfeab1f76fbe
BLAKE2b-256 6bb8ab6ada4ef71f2fc8112e897fe5f20658b69f2167e638334df6dcb697c07e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8ddccfc69c0c1f5eb8864f3281d9546ca7799f55392c03d9c2bf912418824adb
MD5 177cfa16f9f3b71860767878edd6eec5
BLAKE2b-256 f1c20c9a0dec1ddf1c59876098524f5a6a557d187f0854e87e286dc03b4e900e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd3ba31115e041193c0b9446d00964dca0d7c3095298273a1a164c58c5eb8c03
MD5 c6243e8920a33b314595ff1b00408c72
BLAKE2b-256 8a7d0511a101a647355df8af1e07ca73a7b8c4223a43d13d75d413d6b8ae3810

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 292d3263db62304a684af30cfbf74ca4d7afc63ba12de4a1c566fa4df7d2f633
MD5 61ab96a10b6924b1d5456877f3c923da
BLAKE2b-256 094b1d2d1a87121892d75c5f18abcce2e9bf1b4da7e1878856e5dbf8d10714eb

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0d5f29c72dbf9b4790f8ccc63e8336417d64f0410d2a1b82442ff3de7e308423
MD5 83cc780c30067c6331a7ef2e119bc297
BLAKE2b-256 63e24a72da59f254ef905e7483df2feccd0ee9785d55ce10db21f83ce56cd442

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6bc16d57e9349537ad382fd773eabcc651199a16aa7bdefb4c8bdf804780fd88
MD5 0f96e4af427e806be82fe989816e1b91
BLAKE2b-256 2d1635a925f571a8b38da7f75486509378bb69238a9392dedcb88a16e4f62920

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b47542a9578de6f5f265785fddff0755c8244b967d7a2251d2e20c32a9fbc9c
MD5 3384553156c59867bebb6335cf208745
BLAKE2b-256 a85762a8d046d3f0b1253064b63e6e1808c64a4ceea3756104c056d76030b023

See more details on using hashes here.

File details

Details for the file pyxai-1.0.7-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.7-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb7ccda8f06c6d1bd067ab0f725409816eab4597033dade6243c497e200769b5
MD5 945d3d5c22603a1dc7d060bbdf0f7bdb
BLAKE2b-256 fb5e834fc2951bc5aafb6496dd6ef86f0f87e7e5b89555a032fc2d9e549cadda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page