Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring explanations of various forms suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). In contrast to many approaches to XAI (SHAP, Lime, ...), PyXAI algorithms are model-specific. Furthermore, PyXAI algorithms guarantee certain properties about the explanations generated, that can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). For the regression tasks, abductive explanations for $X$ are intended to explain why the regression value on $X$ is in a given interval.
  • Contrastive explanations for $X$ is to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

New features in version 1.0.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
PyXAI's main steps for producing explanations.
pyxai pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, Lime, ...) to XAI are model-agnostic, but do not offer any guarantees of rigor. A number of works have highlighted several misconceptions about informal approaches to XAI (see the related papers). Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

  • The installation guide and the quick start
  • About obtaining models:
  • About obtaining explanations:
    • The concepts of the PyXAI explainer module: Concepts
    • How to use a time limit? Time Limit
    • The PyXAI library offers the possibility to process user preferences (prefer some explanations to others or exclude some features): Preferences
    • Theories are knowledge about the dataset. PyXAI offers the possibility of encoding a theory when calculating explanations in order to avoid calculating impossible explanations: Theories
    • How to compute explanations for classification tasks? Explaining Classification
    • How to compute explanations for regression tasks? Explaining Regression
  • How to use the PyXAI's Graphical User Interface (GUI) for visualizing explanations?

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.show()
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyxai-1.0.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (8.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp312-cp312-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp312-cp312-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyxai-1.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp311-cp311-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp311-cp311-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyxai-1.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp310-cp310-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyxai-1.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp39-cp39-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyxai-1.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp38-cp38-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyxai-1.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyxai-1.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyxai-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyxai-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyxai-1.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyxai-1.0.9-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (8.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

File details

Details for the file pyxai-1.0.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8076256caaeef609df3cd52bbde5daf225551e5b4270075350beffd34bdab04
MD5 8a1668f767d9a571d1ebbcb04e547804
BLAKE2b-256 6e3084ba399ab9d539e6d2306743d1753b2634c3c56bfe32a68814b7d1362b90

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4cdd009e74898bf0e1d82975a5513d0000fd33d0302a9d0ac048b474be10bd64
MD5 df74aeb9bf32d748072dbf0895bddef4
BLAKE2b-256 db6d859d9b5663248541a3ccd7ddf3377e91eedb6252cf237a4aab82f341976f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a427253fb750f0ba432c28919a6f714ee40c7435700cdfc71e90f42731c6012
MD5 2819595e07b17550f4fd003264bd406b
BLAKE2b-256 bccd9bcde89bf6c73b4b27d0fefd5d4eab49ab21b8b0dd2763c0680db148f4f4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcb307d663608b4db2ac0e39f7b3c3c58dc7d2352ab8818faa518ccfce139250
MD5 b6df81389828843286305d9f889f3bb8
BLAKE2b-256 5092fdebace0bdc78f21c8f19f92af7a62d5a7af258ab7221845ce4f5c78f0e4

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab1355636f1135bf2bbe283d81c11b1cd49e0ee4202b0ef97f8492b21d580f21
MD5 9f10c4ee8b042ad6c23d3ea03238c0e5
BLAKE2b-256 7651ca4742c149543a0900386c355b749c423f40ecf5d80782a8d033a45bc16f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ae084b2e08ae739a7d6ea424a2b5a933b2dff12e8d0673affa0b5dd80ab9ebe
MD5 17be81f31c3322110f4e512c6f606656
BLAKE2b-256 e2e697ce44628dbd1aca7846d773fe8617796608da26e0a6a3301b45095a0838

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d231cea45db894d38306f0cec9714d3af5edea0c89c6c32d0cd63164524405e
MD5 8b7a05cef3b7cc159d06f29ede10db6c
BLAKE2b-256 859a4c912abad1600685a6b025b15d9145dfa0210200bdc57d63cdfb92c7f430

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a6ff1d2b2472550ca2e95a29d60e8289068f63f1cd24f57dd103c5344afc3394
MD5 97a5ea8e7964938fa57a60c804b6f239
BLAKE2b-256 ecd925fc83efab7ce66f57bbf46d66e19bfa4477c9091b21320276dfe53ed29d

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7655fdeb02f9a1e62404e69b560faf415e98362ff11761fba5c4eb62afd3c495
MD5 39d35f24bb9f4c1c6f9e5f60c2b477d1
BLAKE2b-256 1cd97a16b073a1904a9555930c518556e41f5dd073ba01d6c1c1872c2db152d2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7eccb6772690aaa25cf44a4e0abc552fa43c722e3a636c2e1235b5afc9bfbed8
MD5 e8a79276a9ee857924478e688e5022f0
BLAKE2b-256 c2357a1619cdd89ae2067ec9e73a2942f3a400a1a6a82d0b7ed217afd43e2eec

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64dfe96f5cb94cb758daec01d738ce6c47733ae7de5d20175fa23ab65f3adb83
MD5 330d6f18d5761d2ca180cf23a7cf935f
BLAKE2b-256 1dfa8d27851bec0592a97218b056039169954da96e3c9e1f766157894e0ed0fe

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7a4472c2451bdad3df28e1537e22cd941a888151fbb4230fbfcf8ad8de2a8a03
MD5 786934639928a705be612bebb60aa1bd
BLAKE2b-256 176dbc2860b3c1fa0e7be85befae06b08b11a14d66377d9603f4df6a1dcbb817

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb3bd806627a5eb2b4d9456563134b5f032f70a413888f3d7e057c245e5486fc
MD5 4e38a9e719c46d8e7f36cf1163836771
BLAKE2b-256 18e4ad6b596c69f57b2c33fcc1a3c9d66b937ca7fc2d2a019b252895a20d642f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 445f703f68c8149167cb82f6e4fdfaa6da77884210d4df9bef1888aa4736e1c9
MD5 a27c0c027f78f6c186ce0c6c19b36a63
BLAKE2b-256 12b7107497c7848715932a96f5658182decf06c0adf827293a260b760f176d36

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7c6470227c77f7bb132627e40abb16e561f04e771de96b06a1c52d99980371b
MD5 363cb7f383f4cb2fc145310e3e39a4bb
BLAKE2b-256 f6d7eb7c8577e042540f27933ee39d66619387330032adfcc241838caf385da5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 33d1225529b77e979effd1c33fbc16a9f0a9aee1a9b15bdc0143b5425be1ce58
MD5 4273353b989faba7e73a5ba93ff1cdbf
BLAKE2b-256 6e6fc491cd42d17b8719ea2de23016c7a256d966b949b0effffa05f74727bcf1

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 07d8002fd259184beff58d5a5b14a217f97f482633ab645c2b68b91430322a5e
MD5 ad0463a7575ae4f51cdbf9d9b11b8492
BLAKE2b-256 69ebd5ca1e9770c3942e494ff5050b9c7c2ad95f5ff4cc8abba8eb2fe95c3916

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 622665eac647d888695485e89da2225d3058089666caaf811d4555a45b54fbec
MD5 71f8dce3cc97e737a9d0886f84f854f5
BLAKE2b-256 2da9a9afc07cdc912a4da50fda7878bf8ccbc3677bd458bb34ac0604f6f813f5

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4de3595fb0544e00cf0d4536dec6233f2c27726a1a2dcba16052a0dd5762a26f
MD5 4b9a0b30a4d0d4016d7741876aacdd51
BLAKE2b-256 7799d76d44100f5c95d78b8d5a18b2ef52f6a3935ad4280636061f6747bd5b83

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b156d4ccba9295c4109be639f7985a43c8fea1edae1929a449c1962edbed72f8
MD5 d14d60f4dc70ee125d749f7ac8aa6fda
BLAKE2b-256 787def9916f69bfafefea502b92e66e9df0fe9cdb753929b1877c64bd27db014

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b98910d6d35661148429b409bc78ceedfd3f966a9bca6f0e3d59b62bd77f70d8
MD5 2017dbc4697447efc0a3a05674fbd2da
BLAKE2b-256 4c10daad86317e540613f207c698520013ebc7da5b0aa03675314c5bbe5c6295

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ad45c0d799d1dd98e582dc8a66dcce341a3d007fc00a38279e6b476355daae6
MD5 cfa44cc36fdd396b01051a4b65bd8fb2
BLAKE2b-256 47f19c932e0915937174212d0ff3e24859141dbbea99cb2495dd63c06f01854e

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79f5c0368b9fc398e583cbaf8e34bfe55ba7cc94b3f4c1b562b16aea757116e4
MD5 f66f18b6748f5398a4e31ee10be95db2
BLAKE2b-256 71eec84f803622ed9688897ebff886f87aa1f881e83cb9a18ff3307ece570e9f

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 517f6204b6cb09fc4c5e0cd6c8f12681ac3ef061cd58a473feee90dce949f58f
MD5 73959a25dbd4ae90d819cb6a39128924
BLAKE2b-256 07be199d441b9f9978d552b09e95e5054e787b5c9515c4b8c8a7cc029f4e6cae

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a6248b5741fb35c13d607d71ba633d743f69d0b137ec8bdaa518a7f9ab6e44a0
MD5 1c92341236293cebb5900b0fb29bd545
BLAKE2b-256 34e595090ff734714098257815034d179ef2954bcd60daf0948be4a90b3971eb

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 401ef973c48ec165ca6e8df631a168964538496a4e0c7b58e319a2e2699e3101
MD5 b761041b77b74b42cfbabf3a86e3d2fe
BLAKE2b-256 7b69d46797de4fe1751524c667cb6908d77aba2c035f3159a323ecfd9a2316ca

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28c8c1c1d2e896ecb92e5610e6dd261468d561d2767c83c279263027555a9df0
MD5 5a956fdad83fef7ff52ebcbe0b652325
BLAKE2b-256 af71ea1805d56dea683dc647a4373694689fe62e0f9f70981f085f366ac27460

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1d5bd3e588f0550b2208eba6de65a9316a49725ffa723f58038286dce18b3a85
MD5 b2f068bf12db269583736089dd8da268
BLAKE2b-256 958eb591256c315f2063a5231e72e4ee34a6a142aa9c7d0802ff700ed8515e02

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7633d4919bf902f56c818a93fe5076fd654c93a5247019b43732513fe6b6a907
MD5 3def977c810957c0f6925ffa21957f3b
BLAKE2b-256 18ba32fcdcbb840a987f0f948ef23148a688647336a004b158530f0462b3eb6a

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b2a896b1dcf54d089929fe77f1e7f0ad61b7ed6d6c29eb3ca3fd28d9dbb1dee9
MD5 a73fb1070c133dc749f06ca812580d62
BLAKE2b-256 94cb672b0e0779d9dcf7f825d50f45bfbec831a47a2680407367a8d4fd1d78b6

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 56fec431027621e453af8257a10cdeba796f5cbc9931ecc695fa6c93aee94876
MD5 4e78d73e77340523b65436cfafdf10dd
BLAKE2b-256 c8e371d94a380de78d93b6f2e9808f4399f637e86ae258decca21f3c4d926560

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b0e1d4ef3faf8f949e39f00dbce81746b04b3063257d2372fa64201d6e028d7
MD5 f602dad6c7e0f735faadd3e50059958f
BLAKE2b-256 9b7670c607f3ea17d624ba28f2f79050ee82e15d80444b3658b862a287f9cdf2

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f9d7738781c70e18c83e73b2447dd28c6d2a0a0772c0edcd9de9e272e6a06dea
MD5 18a37ca0131688c3a40255c5943332f2
BLAKE2b-256 42c76fbe21ec0be4de56bc17f28c111231a71cccf3225352ac6f804fb2e59885

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3290cfdda11bbf8eb791e340dca3e95a4e237d69cb453b8b91f71994c04001b8
MD5 894f11cd5d4bacabbafc32c14a0aa85c
BLAKE2b-256 9aaac4970ca0936974af51510e46789becc22a4107f1949a7d4d066862b4b9ec

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5a6fe485a581951d893601ac89be26ab4f41836eb50b0916048a6688b286c89
MD5 46001566c054e45011ee61331e36fc03
BLAKE2b-256 f80d36116d856d242498aa0edebae00f3abe894ad1e2c4e19a67d577a210e30b

See more details on using hashes here.

File details

Details for the file pyxai-1.0.9-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyxai-1.0.9-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c4d8e3897443498f6785171c4148a9166225c9c83da3bd67474a1b2c5ceb7bb
MD5 7e13d42d6000ff6ff3b48516092cb622
BLAKE2b-256 5c9ff019d9bc10b78c649c12e87a64bf8d2ebdf40b43974032a9360c2097b68b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page