Extension library for Python
Project description
pyxtension is a pure Python GNU-licensed library that includes Scala-like streams, Json with attribute access syntax, and other common-use stuff.
Installation
pip install pyxtension
or from Github:
git clone https://github.com/asuiu/pyxtension.git cd pyxtension python setup.py install
or
git submodule add https://github.com/asuiu/pyxtension.git
Modules overview
Json.py
Json
Never again will you have to write code like this:
body = {
'query': {
'filtered': {
'query': {
'match': {'description': 'addictive'}
},
'filter': {
'term': {'created_by': 'ASU'}
}
}
}
}
From now on, you may simply write the following three lines:
body = Json()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'ASU'
streams.py
stream
streams
Never again will you have to write code like this:
> lst = xrange(1,6)
> reduce(lambda x, y: x * y, map(lambda _: _ * _, filter(lambda _: _ % 2 == 0, lst)))
64
From now on, you may simply write the following lines:
> the_stream = stream( xrange(1,6) )
> the_stream.\
filter(lambda _: _ % 2 == 0).\
map(lambda _: _ * _).\
reduce(lambda x, y: x * y)
64
A Word Count Map-Reduce naive example using multiprocessing map
corpus = [
"MapReduce is a programming model and an associated implementation for processing and generating large data sets with a parallel, distributed algorithm on a cluster.",
"At Google, MapReduce was used to completely regenerate Google's index of the World Wide Web",
"Conceptually similar approaches have been very well known since 1995 with the Message Passing Interface standard having reduce and scatter operations."]
def reduceMaps(m1, m2):
for k, v in m2.iteritems():
m1[k] = m1.get(k, 0) + v
return m1
word_counts = stream(corpus).\
mpmap(lambda line: stream(line.lower().split(' ')).countByValue()).\
reduce(reduceMaps)
Basic methods
map(f)
Identic with builtin map but returns a stream
mpmap(f, poolSize=16)
Parallel ordered map using multiprocessing.Pool.imap().
It can replace the map when need to split computations to multiple cores, and order of results matters.
It spawns at most poolSize processes and applies the f function.
The elements in the result stream appears in the same order they appear in the initial iterable.
:type f: (T) -> V :rtype: `stream`
mpfastmap(f, poolSize=16)
Parallel ordered map using multiprocessing.Pool.imap_unordered().
It can replace the map when the ordered of results doesn’t matter.
It spawns at most poolSize processes and applies the f function.
The elements in the result stream appears in the unpredicted order.
:type f: (T) -> V :rtype: `stream`
fastmap(f, poolSize=16)
It spawns at most poolSize threads and applies the f function.
The elements in the result stream appears in the unpredicted order.
Because of CPython GIL it’s most usefull for I/O or CPU intensive consuming native functions, or on Jython or IronPython interpreters.
- type f:
-> V
- rtype:
stream
**flatMap(predicate=_IDENTITY_FUNC)** :param predicate: is a function that will receive elements of self collection and return an iterable ‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
By default predicate is an identity function
- type predicate:
(V)-> collections.Iterable[T]
- return:
will return stream of objects of the same type of elements from the stream returned by predicate()
Example:
stream([[1, 2], [3, 4], [4, 5]]).flatMap().toList() == [1, 2, 3, 4, 4, 5]
filter(predicate)
identic with builtin filter, but returns stream
reversed()
returns reversed stream
exists(predicate)
Tests whether a predicate holds for some of the elements of this sequence.
- rtype:
bool
Example:
stream([1, 2, 3]).exists(0) -> False
stream([1, 2, 3]).exists(1) -> True
**keyBy(keyfunc = _IDENTITY_FUNC)** Transforms stream of values to a stream of tuples (key, value) ‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
- param keyfunc:
function to map values to keys
- type keyfunc:
-> T
- return:
stream of Key, Value pairs
- rtype:
stream[( T, V )]
Example:
stream([1, 2, 3, 4]).keyBy(lambda _:_ % 2) -> [(1, 1), (0, 2), (1, 3), (0, 4)]
groupBy()
groupBy([keyfunc]) -> Make an iterator that returns consecutive keys and groups from the iterable.
The iterable needs not to be sorted on the same key function, but the keyfunction need to return hasable objects.
- param keyfunc:
[Optional] The key is a function computing a key value for each element.
- type keyfunc:
-> (V)
- return:
(key, sub-iterator) grouped by each value of key(value).
- rtype:
stream[ ( V, slist[T] ) ]
Example:
stream([1, 2, 3, 4]).groupBy(lambda _: _ % 2) -> [(0, [2, 4]), (1, [1, 3])]
countByValue()
Returns a collections.Counter of values
Example
stream(['a', 'b', 'a', 'b', 'c', 'd']).countByValue() == {'a': 2, 'b': 2, 'c': 1, 'd': 1}
distinct()
Returns stream of distinct values. Values must be hashable.
stream(['a', 'b', 'a', 'b', 'c', 'd']).distinct() == {'a', 'b', 'c', 'd'}
reduce(f, init=None)
same arguments with builtin reduce() function
toSet()
returns sset() instance
toList()
returns slist() instance
toMap()
returns sdict() instance
sorted(key=None, cmp=None, reverse=False)
same arguments with builtin sorted()
size()
returns length of stream. Use carefully on infinite streams.
join(f)
Returns a string joined by f. Proivides same functionality as str.join() builtin method.
if f is basestring, uses it to join the stream, else f should be a callable that returns a string to be used for join
mkString(f)
identic with join(f)
take(n)
returns first n elements from stream
head()
returns first element from stream
zip()
the same behavior with itertools.izip()
**unique(predicate=_IDENTITY_FUNC)** Returns a stream of unique (according to predicate) elements appearing in the same order as in original stream ‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
The items returned by predicate should be hashable and comparable.
Other classes
slist
Inherits streams.stream and built-in list classes, and keeps in memory a list allowing faster index access
sset
Inherits streams.stream and built-in set classes, and keeps in memory the whole set of values
sdict
Inherits streams.stream and built-in dict, and keeps in memory the dict object.
defaultstreamdict
Inherits streams.sdict and adds functionality of collections.defaultdict from stdlib
Json
Json is a module that provides mapping objects that allow their elements to be accessed both as keys and as attributes:
> from pyxtension.Json import Json
> a = Json({'foo': 'bar'})
> a.foo
'bar'
> a['foo']
'bar'
Attribute access makes it easy to create convenient, hierarchical settings objects:
with open('settings.yaml') as fileobj:
settings = Json(yaml.safe_load(fileobj))
cursor = connect(**settings.db.credentials).cursor()
cursor.execute("SELECT column FROM table;")
Basic Usage
Construction
Directly from a JSON string
> Json('{"key1": "val1", "lst1": [1,2] }')
{u'key1': u'val1', u'lst1': [1, 2]}
From tuples:
> Json( ('key1','val1'), ('lst1', [1,2]) )
{'key1': 'val1', 'lst1': [1, 2]}
# keep in mind that you should provide at least two tuples with key-value pairs
As a built-in dict
> Json( [('key1','val1'), ('lst1', [1,2])] )
{'key1': 'val1', 'lst1': [1, 2]}
Json({'key1': 'val1', 'lst1': [1, 2]})
{'key1': 'val1', 'lst1': [1, 2]}
Convert to a dict
> json = Json({'key1': 'val1', 'lst1': [1, 2]})
> json.toOrig()
{'key1': 'val1', 'lst1': [1, 2]}
Valid Names
Any key can be used as an attribute as long as:
The key represents a valid attribute (i.e., it is a string comprised only of alphanumeric characters and underscores that doesn’t start with a number)
The key does not shadow a class attribute (e.g., get).
Attributes vs. Keys
> attr = Json({'foo': {'bar': 'baz'}})
> attr.foo.bar
'baz'
> attr = Json({'foo': [{'bar': 'baz'}, {'bar': 'qux'}]})
> for sub_attr in attr.foo:
> print(sub_attr.bar)
'baz'
'qux'
> json = Json({1: {'two': 3}})
> json[1].two
3
JsonList usage examples:
> json = Json('{"lst":[1,2,3]}')
> type(json.lst)
<class 'pyxtension.Json.JsonList'>
> json = Json('{"1":[1,2]}')
> json["1"][1]
2
Assignment as keys will still work:
.. code:: python
> json = Json({‘foo’: {‘bar’: ‘baz’}}) > json[‘foo’][‘bar’] = ‘baz’ > json.foo {‘bar’: ‘baz’}
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pyxtension-1.12.7.tar.gz
.
File metadata
- Download URL: pyxtension-1.12.7.tar.gz
- Upload date:
- Size: 31.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd5197396ca3b4f44cd11ed91089cddcaee36847511e5946109c38961e0d235b |
|
MD5 | dfa75111b0bceae0bd9edf644700704f |
|
BLAKE2b-256 | fac44629fac64d552f96a585eaeff3533990e0775aa79f16ab966b74d58ad582 |