Skip to main content

Easy to use Python wrapper for YOLO Real-Time ObjectDetection Library

Project description

Python Wrapper for the YOLO

logo

Installation

Dependencies

Darknet Shared Library

You should first install darknet library with BUILD_SHARED_LIBS set to ON. After the installation the LIB_DARKNET environment variable should be set to shared library path. The path is required in runtime so my recommendation is adding this to your rc file. export LIB_DARKNET=<path_to_libdarknet.so>

PyYOLO

From PyPi
pip3 install pyyolo --user
From source
git clone https://github.com/goktug97/PyYOLO
cd PyYOLO
python3 setup.py install --user

Documentation

Example

python sample.py

sample.py

import cv2
import pyyolo

def main():
    detector = pyyolo.YOLO("./models/yolov3-spp.cfg",
                           "./models/yolov3-spp.weights",
                           "./models/coco.data",
                           detection_threshold = 0.5,
                           hier_threshold = 0.5,
                           nms_threshold = 0.45)

    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        dets = detector.detect(frame, rgb=False)
        for i, det in enumerate(dets):
            print(f'Detection: {i}, {det}')
            xmin, ymin, xmax, ymax = det.to_xyxy()
            cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 255))
        cv2.imshow('cvwindow', frame)
        if cv2.waitKey(1) == 27:
            break

if __name__ == '__main__':
    main()

BBox Class

This class is just a numpy array with extra attributes and functions.

Python 3.8.0 (default, Oct 23 2019, 18:51:26)
[GCC 9.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyyolo
>>> bbox = pyyolo.BBox(x=10, y=20, w=100, h=200, prob=0.9, name='person')
>>> bbox
BBox([ 10,  20, 100, 200])
>>> print(bbox)
x: 10, y: 20, w: 100, h: 200, probability: 0.9, name: person
>>> x, y, w, h = bbox
>>> print(x, y, w, h)
10 20 100 200
>>> bbox + bbox
BBox([ 20,  40, 200, 400])
>>> bbox.prob
0.9
>>> bbox.name
'person'
>>> xmin, ymin, xmax, ymax = bbox.to_xyxy()
>>> xmin, ymin, xmax, ymax
(10, 20, 110, 220)

YOLO Class

  • detect function returns list of BBox Instances. See sample.py for example usage.
Python 3.8.0 (default, Oct 23 2019, 18:51:26)
[GCC 9.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyyolo
>>> detector = pyyolo.YOLO("./models/yolov3-spp.cfg",
                           "./models/yolov3-spp.weights",
                           "./models/coco.data",
                           detection_threshold = 0.5,
                           hier_threshold = 0.5,
                           nms_threshold = 0.45)
>>> import cv2
>>> img = cv2.imread('test.png')
>>> detector.detect(img)
[BBox([ 29, 134, 461, 339])]
>>> dets = detector.detect(img)
>>> print(dets[0])
x: 29, y: 134, w: 461, h: 339, probability: 0.6172798275947571, name: person

License

PyYOLO is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyyolo-0.1.6.tar.gz (5.4 kB view details)

Uploaded Source

File details

Details for the file pyyolo-0.1.6.tar.gz.

File metadata

  • Download URL: pyyolo-0.1.6.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for pyyolo-0.1.6.tar.gz
Algorithm Hash digest
SHA256 a82a2242e1bffa540393cbf6e9f1823de73d23d93a2e5eef2dc335f30cb9e4bc
MD5 e61afe6b6a8665b9c6161aa4c6b49699
BLAKE2b-256 f6b90e6e1e136bb5915c3239899483ac8bbf4a23700d0bc82c36ce2fb125d7fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page