Skip to main content

No project description provided

Project description

pyyolov9

This is an unofficial package for yolov9. The original repository can be found here.

Installation

pip install pyyolov9

Below is the original README.md from the repository

YOLOv9

Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

arxiv.org Hugging Face Spaces Hugging Face Spaces Colab OpenCV

Performance

MS COCO

Model Test Size APval AP50val AP75val Param. FLOPs
YOLOv9-T 640 38.3% 53.1% 41.3% 2.0M 7.7G
YOLOv9-S 640 46.8% 63.4% 50.7% 7.1M 26.4G
YOLOv9-M 640 51.4% 68.1% 56.1% 20.0M 76.3G
YOLOv9-C 640 53.0% 70.2% 57.8% 25.3M 102.1G
YOLOv9-E 640 55.6% 72.8% 60.6% 57.3M 189.0G

Useful Links

Expand

Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297

ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461

ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150

TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309

QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073

TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706

OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003

C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619

C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244

OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672

Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943

CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18

ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37

YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644

YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595

YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107

YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540

YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340

YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879

YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319

YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804

YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766

YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350

Comet logging: https://github.com/WongKinYiu/yolov9/pull/110

MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87

AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662

AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760

Conda environment: https://github.com/WongKinYiu/yolov9/pull/93

AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480

Installation

Docker environment (recommended)

Expand
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3

# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx

# pip install required packages
pip install seaborn thop

# go to code folder
cd /yolov9

Evaluation

yolov9-c-converted.pt yolov9-e-converted.pt yolov9-c.pt yolov9-e.pt gelan-c.pt gelan-e.pt

# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val

# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val

# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val

You will get the results:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.530
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.702
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.578
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.652
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.702
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844

Training

Data preparation

bash scripts/get_coco.sh
  • Download MS COCO dataset images (train, val, test) and labels. If you have previously used a different version of YOLO, we strongly recommend that you delete train2017.cache and val2017.cache files, and redownload labels

Single GPU training

# train yolov9 models
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

# train gelan models
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

Multiple GPU training

# train yolov9 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

# train gelan models
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

Re-parameterization

See reparameterization.ipynb.

Inference

# inference converted yolov9 models
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect

# inference yolov9 models
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect

# inference gelan models
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect

Citation

@article{wang2024yolov9,
  title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
  author={Wang, Chien-Yao  and Liao, Hong-Yuan Mark},
  booktitle={arXiv preprint arXiv:2402.13616},
  year={2024}
}
@article{chang2023yolor,
  title={{YOLOR}-Based Multi-Task Learning},
  author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2309.16921},
  year={2023}
}

Teaser

Parts of code of YOLOR-Based Multi-Task Learning are released in the repository.

Object Detection

gelan-c-det.pt

object detection

# coco/labels/{split}/*.txt
# bbox or polygon (1 instance 1 line)
python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10
Model Test Size Param. FLOPs APbox
GELAN-C-DET 640 25.3M 102.1G 52.3%
YOLOv9-C-DET 640 25.3M 102.1G 53.0%

Instance Segmentation

gelan-c-seg.pt

object detection instance segmentation

# coco/labels/{split}/*.txt
# polygon (1 instance 1 line)
python segment/train.py --workers 8 --device 0 --batch 32  --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
Model Test Size Param. FLOPs APbox APmask
GELAN-C-SEG 640 27.4M 144.6G 52.3% 42.4%
YOLOv9-C-SEG 640 27.4M 145.5G 53.3% 43.5%

Panoptic Segmentation

gelan-c-pan.pt

object detection instance segmentation semantic segmentation stuff segmentation panoptic segmentation

# coco/labels/{split}/*.txt
# polygon (1 instance 1 line)
# coco/stuff/{split}/*.txt
# polygon (1 semantic 1 line)
python panoptic/train.py --workers 8 --device 0 --batch 32  --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
Model Test Size Param. FLOPs APbox APmask mIoU164k/10ksemantic mIoUstuff PQpanoptic
GELAN-C-PAN 640 27.6M 146.7G 52.6% 42.5% 39.0%/48.3% 52.7% 39.4%
YOLOv9-C-PAN 640 28.8M 187.0G 52.7% 43.0% 39.8%/- 52.2% 40.5%

Image Captioning (not yet released)

object detection instance segmentation semantic segmentation stuff segmentation panoptic segmentation image captioning

# coco/labels/{split}/*.txt
# polygon (1 instance 1 line)
# coco/stuff/{split}/*.txt
# polygon (1 semantic 1 line)
# coco/annotations/*.json
# json (1 split 1 file)
python caption/train.py --workers 8 --device 0 --batch 32  --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
Model Test Size Param. FLOPs APbox APmask mIoU164k/10ksemantic mIoUstuff PQpanoptic BLEU@4caption CIDErcaption
GELAN-C-CAP 640 47.5M - 51.9% 42.6% 42.5%/- 56.5% 41.7% 38.8 122.3
YOLOv9-C-CAP 640 47.5M - 52.1% 42.6% 43.0%/- 56.4% 42.1% 39.1 122.0

Acknowledgements

Expand

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyyolov9-0.0.1.tar.gz (294.3 kB view details)

Uploaded Source

Built Distribution

pyyolov9-0.0.1-py3-none-any.whl (369.5 kB view details)

Uploaded Python 3

File details

Details for the file pyyolov9-0.0.1.tar.gz.

File metadata

  • Download URL: pyyolov9-0.0.1.tar.gz
  • Upload date:
  • Size: 294.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyyolov9-0.0.1.tar.gz
Algorithm Hash digest
SHA256 ee09a678695aadc5facda76588df0941e33faf3474081cff296366056e7c8126
MD5 3937a33a89299eb33011281783fa8625
BLAKE2b-256 381755e93f1ba2e5c5dcaf863432489f7db973b3d48b3ba178165d3f6590ec1e

See more details on using hashes here.

Provenance

File details

Details for the file pyyolov9-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pyyolov9-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 369.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyyolov9-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3852ddb2858399d1997eb4519f6150192da9e0fc57ef42c40f03bf4f48f027f9
MD5 a55bfe685a3998b1258f6ee2e97b2942
BLAKE2b-256 412affb5ced1cec78b45b0d9b7d027e10b520b443c715c8932a61349931bc3a8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page