Skip to main content

A Python package to access information about properties from Zoopla

Project description

pyzoopla

PyPI version PyPI - Python Version Build Status codecov HitCount

A Python package to access functionality from the Zoopla website. Allows you to search for detailed information on properties currently for sale/to rent, as well as look up house prices and values.

Installation

$ pip install pyzoopla

Unit tests

To run the unit tests for this package:

$ python -m pytest tests/

Example usage

Look up house prices for a particular area and get a list of property ID's to use later.

>>> from pyzoopla.prices import PricesSearch
>>> results = PricesSearch(location='sw7')
>>> print(results)
https://www.zoopla.co.uk/house-prices/hp20/
>>> results.assumed_search_location
'SW7'
>>> results.total_properties
8944
>>> results.total_pages
224
>>> results.market_activity()
{'period': 20, 'property_type': 'all', 'average_price': 1139919, 'num_sales': 7229, 'average_value': 2609459, 'value_change': 1994923}
>>> results.market_activity(period=1, property_type='terraced')
{'period': 1, 'property_type': 'terraced', 'average_price': 4494545, 'num_sales': 22, 'average_value': 4347526, 'value_change': -319628}
>>> results.all_properties(page_limit=1)
['23188074', '23188094', '23188099', '23188106', '23188193', '23188201', '23188221', '23188313', '23188342', '23188427', '23188464', '23188484', '23188503', '23188543', '23188575', '23188615', '23188657', '23188914', '23188966', '23188979', '23189038', '23189178', '23189398', '23189512', '23189584', '23189685', '23189699', '23189892', '23190158', '23190179', '23190216', '23190302', '23190337', '23190344', '23190382', '23190516', '23190549', '23190747', '23190786', '23191054']

Look up details for a particular property.

>>> from pyzoopla.properties import PropertyDetails
>>> prop = PropertyDetails(property_id='23191054')
>>> prop
https://www.zoopla.co.uk/property/1-kendrick-mews/london/sw7-3hg/23191054
>>> prop.details()
{'acorn_type': '16', 'activity': 'property_details', 'country_code': 'gb', 'incode': '3HG', 'listing_id': '23191054', 'location': 'SW73HG', 'num_baths': 'null', 'num_beds': 'null', 'outcode': 'SW7', 'page': '/property/details/', 'postal_area': 'SW', 'price': '2408399', 'price_estimate': '2408399', 'price_last_sale': '850000', 'price_temptme': 'null', 'property_type': '', 'rental_value': 'null', 'section': 'home-values'}
>>> prop.location()
{'is_approximate': False, 'latitude': 51.493346, 'longitude': -0.176681}
>>> prop.property_value()
{'buy': {'value': 2408000, 'lower_bound': 2047000, 'upper_bound': 2770000}, 'rent': {'value': nan, 'lower_bound': nan, 'upper_bound': nan}, 'confidence': nan}
>>> prop.value_change()
                 period    value  value_change  perc_change
0  last sold (Jul 2002)   850000       1558000        183.3
1           1 month ago  2403200          4000          0.2
2          3 months ago  2412850          5950         -0.2
3          6 months ago  2282450        124800          5.5
4            1 year ago  2434800         26800         -1.1
5           2 years ago  2427400         18900         -0.8
6           3 years ago  2197100        211150          9.6
7           4 years ago  2213250        194400          8.8
8           5 years ago  1887150        521000         27.6
>>> prop.sales_history()
{'date': ['Jul 2002', 'Feb 2000'], 'status': ['Sold', 'Sold'], 'price': [850000, 660000], 'listing_id': [nan, nan]}

pyzoopla can also be used on the command line. To scrape the property details for a given location (you can copy+paste the commands from the video):

demo

For full option details: python3 -m pyzoopla -h

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyzoopla, version 0.1.13
Filename, size File type Python version Upload date Hashes
Filename, size pyzoopla-0.1.13-py3-none-any.whl (25.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pyzoopla-0.1.13.tar.gz (19.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page