A PyTorch implementation of Quantum Weight Re-Mapping
Project description
qW-Map: Weight Re-Mapping for Variational Quantum Circuits
A PyTorch implementation of Quantum Weight Re-Mapping
Implemented Functions
Install
$ pip install qw-map
Example:
import pennylane as qml
from qw_map import tanh
from torch import Tensor
def circuit(ws: Tensor, x: Tensor):
qml.AngleEmbedding(x, rotation='X', wires=range(num_qubits))
qml.StronglyEntanglingLayers(tanh(ws), wires=range(num_qubits))
Citation
TODO
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qW-Map-0.1.1.tar.gz
(3.3 kB
view details)
Built Distribution
File details
Details for the file qW-Map-0.1.1.tar.gz
.
File metadata
- Download URL: qW-Map-0.1.1.tar.gz
- Upload date:
- Size: 3.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e7bd35d431381692029d6275add4fe5072ed2664af18ea880ef33643fe2a134 |
|
MD5 | 0b64a0fd115bfaced2b267ab7e0bccf3 |
|
BLAKE2b-256 | c9b3e1f49b779f39b8b0f7e36842c660e8e99ab2b369117949760a9d2dc4465e |
File details
Details for the file qW_Map-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: qW_Map-0.1.1-py3-none-any.whl
- Upload date:
- Size: 3.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f2ae0c61235a91060d1499d86523c0f7a49333d0b851ebbc8aec793785e63faf |
|
MD5 | 193159e10017c4746266087302ba59fa |
|
BLAKE2b-256 | 8b5019ab8a11e8ac9345b147b84aaa8e5a77b23e04f491724a8b476cb03985e9 |