Skip to main content

Differential abundance workflow for microbiome data

Project description

Main CI

Qadabra: Quantitative Analysis of Differential Abundance Ranks

(Pronounced ka-da-bra)

Qadabra is a Snakemake workflow for running and comparing several differential abundance (DA) methods on the same microbiome dataset.

Importantly, Qadabra focuses on both FDR corrected p-values and feature ranks and generates visualizations of differential abundance results.

Schematic

Please note this software is currently a work in progress. Your patience is appreciated as we continue to develop and enhance its features. Please leave an issue on GitHub should you run into any errors.

Installation

Option 1: Pip install from PyPI

pip install qadabra

Qadabra requires the following dependencies:

  • snakemake
  • click
  • biom-format
  • pandas
  • numpy
  • cython
  • iow

Check out the tutorial for more in-depth instructions on installation.

Option 2: Install from source (this GitHub repository)

Prerequisites

Before you begin, ensure you have Git and the necessary build tools installed on your system.

Clone the Repository

git clone https://github.com/biocore/qadabra.git

Navigate to repo root directory where the setup.py file is located and then install QADABRA in editable mode

cd qadabra
pip install -e .

Usage

1. Creating the workflow directory

Qadabra can be used on multiple datasets at once. First, we want to create the workflow directory to perform differential abundance with all methods:

qadabra create-workflow --workflow-dest <directory_name>

This command will initialize the workflow, but we still need to point to our dataset(s) of interest.

2. Adding a dataset

We can add datasets one-by-one with the add-dataset command:

qadabra add-dataset \
    --workflow-dest <directory_name> \
    --table <directory_name>/data/table.biom \
    --metadata <directory_name>/data/metadata.tsv \
    --tree <directory_name>/data/my_tree.nwk \
    --name my_dataset \
    --factor-name case_control \
    --target-level case \
    --reference-level control \
    --confounder confounding_variable(s) <confounding_var> \
    --verbose

Let's walkthrough the arguments provided here, which represent the inputs to Qadabra:

  • workflow-dest: The location of the workflow that we created earlier
  • table: Feature table (features by samples) in BIOM format
  • metadata: Sample metadata in TSV format
  • tree: Phylogenetic tree in .nwk or other tree format (optional)
  • name: Name to give this dataset
  • factor-name: Metadata column to use for differential abundance
  • target-level: The value in the chosen factor to use as the target
  • reference-level: The reference level to which we want to compare our target
  • confounder: Any confounding variable metadata columns (optional)
  • verbose: Flag to show all preprocessing performed by Qadabra

Your dataset should now be added as a line in my_qadabra/config/datasets.tsv.

You can use qadabra add-dataset --help for more details. To add another dataset, just run this command again with the new dataset information.

3. Running the workflow

The previous commands will create a subdirectory, my_qadabra in which the workflow structure is contained. From the command line, execute the following to start the workflow:

snakemake --use-conda --cores <number of cores preferred> <other options>

Please read the Snakemake documentation for how to run Snakemake best on your system.

When this process is completed, you should have directories figures, results, and log. Each of these directories will have a separate folder for each dataset you added.

4. Generating a report

After Qadabra has finished running, you can generate a Snakemake report of the workflow with the following command:

snakemake --report report.zip

This will create a zipped directory containing the report. Unzip this file and open the report.html file to view the report containing results and visualizations in your browser.

Tutorial

See the tutorial page for a walkthrough on using Qadabra workflow with a microbiome dataset.

FAQs

Coming soon: An FAQs page of commonly asked question on the statistics and code pertaining to Qadabra.

Citation

The manuscript for Qadabra is currently in progress. Please cite this GitHub page if Qadabra is used for your analysis. This project is licensed under the BSD-3 License. See the license file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qadabra-0.3.0.tar.gz (3.2 MB view details)

Uploaded Source

File details

Details for the file qadabra-0.3.0.tar.gz.

File metadata

  • Download URL: qadabra-0.3.0.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for qadabra-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8181a3179a3ed57566a2553960909ee3c1df5065362d77388f8a2dae451ce048
MD5 4e01c4246b6c330e4c487016039f3b68
BLAKE2b-256 e2ebd1cd76b58795c71da7fa1eab5700c388a7411dea52f619e1ba5fe3f5aa55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page