Skip to main content

Models optimized for export to run on device.

Project description

Qualcomm® AI Hub Models

Qualcomm® AI Hub Models

Release Tag PyPi Python 3.9, 3.10, 3.11, 3.12

The Qualcomm® AI Hub Models are a collection of state-of-the-art machine learning models optimized for deployment on Qualcomm® devices.

See supported: On-Device Runtimes, Hardware Targets & Precision, Chipsets, Devices

 

Setup

1. Install Python Package

The package is available via pip:

# NOTE for Snapdragon X Elite users:
# Only AMDx64 (64-bit) Python in supported on Windows.
# Installation will fail when using Windows ARM64 Python.

pip install qai_hub_models

Some models (e.g. YOLOv7) require additional dependencies that can be installed as follows:

pip install "qai_hub_models[yolov7]"

 

2. Configure AI Hub Access

Many features of AI Hub Models (such as model compilation, on-device profiling, etc.) require access to Qualcomm® AI Hub:

 

Getting Started

Export and Run A Model on a Physical Device

All models in our directory can be compiled and profiled on a hosted Qualcomm® device:

pip install "qai_hub_models[yolov7]"

python -m qai_hub_models.models.yolov7.export [--target-runtime ...] [--device ...] [--help]

Using Qualcomm® AI Hub, the export script will:

  1. Compile the model for the chosen device and target runtime (see: Compiling Models on AI Hub).
  2. If applicable, Quantize the model (see: Quantization on AI Hub)
  3. Profile the compiled model on a real device in the cloud (see: Profiling Models on AI Hub).
  4. Run inference with a sample input data on a real device in the cloud, and compare on-device model output with PyTorch output (see: Running Inference on AI Hub)
  5. Download the compiled model to disk.

 

End-To-End Model Demos

Most models in our directory contain CLI demos that run the model end-to-end:

pip install "qai_hub_models[yolov7]"
# Predict and draw bounding boxes on the provided image
python -m qai_hub_models.models.yolov7.demo [--image ...] [--on-device] [--help]

End-to-end demos:

  1. Preprocess human-readable input into model input
  2. Run model inference
  3. Postprocess model output to a human-readable format

Many end-to-end demos use AI Hub to run inference on a real cloud-hosted device (if the --on-device flag is set). All end-to-end demos also run locally via PyTorch.

 

Sample Applications

Native applications that can run our models (with pre- and post-processing) on physical devices are published in the AI Hub Apps repository.

Python applications are defined for all models (from qai_hub_models.models.<model_name> import App). These apps wrap model inference with pre- and post-processing steps written using torch & numpy. These apps are optimized to be an easy-to-follow example, rather than to minimize prediction time.

 

Model Support Data

On-Device Runtimes

Runtime Supported OS
Qualcomm AI Engine Direct Android, Linux, Windows
LiteRT (TensorFlow Lite) Android, Linux
ONNX Android, Linux, Windows

Device Hardware & Precision

Device Compute Unit Supported Precision
CPU FP32, INT16, INT8
GPU FP32, FP16
NPU (includes Hexagon DSP, HTP) FP16*, INT16, INT8

*Some older chipsets do not support fp16 inference on their NPU.

Chipsets

and many more.

Devices

  • Samsung Galaxy S21, S22, S23, and S24 Series
  • Xiaomi 12 and 13
  • Snapdragon X Elite CRD (Compute Reference Device)
  • Qualcomm RB3 Gen 2, RB5

and many more.

 

Model Directory

Computer Vision

Model README
Image Classification
ConvNext-Tiny qai_hub_models.models.convnext_tiny
ConvNext-Tiny-w8a16-Quantized qai_hub_models.models.convnext_tiny_w8a16_quantized
ConvNext-Tiny-w8a8-Quantized qai_hub_models.models.convnext_tiny_w8a8_quantized
DenseNet-121 qai_hub_models.models.densenet121
DenseNet-121-Quantized qai_hub_models.models.densenet121_quantized
EfficientNet-B0 qai_hub_models.models.efficientnet_b0
EfficientNet-B4 qai_hub_models.models.efficientnet_b4
EfficientViT-b2-cls qai_hub_models.models.efficientvit_b2_cls
EfficientViT-l2-cls qai_hub_models.models.efficientvit_l2_cls
GoogLeNet qai_hub_models.models.googlenet
GoogLeNetQuantized qai_hub_models.models.googlenet_quantized
Inception-v3 qai_hub_models.models.inception_v3
Inception-v3-Quantized qai_hub_models.models.inception_v3_quantized
MNASNet05 qai_hub_models.models.mnasnet05
MobileNet-v2 qai_hub_models.models.mobilenet_v2
MobileNet-v2-Quantized qai_hub_models.models.mobilenet_v2_quantized
MobileNet-v3-Large qai_hub_models.models.mobilenet_v3_large
MobileNet-v3-Large-Quantized qai_hub_models.models.mobilenet_v3_large_quantized
MobileNet-v3-Small qai_hub_models.models.mobilenet_v3_small
RegNet qai_hub_models.models.regnet
RegNetQuantized qai_hub_models.models.regnet_quantized
ResNeXt101 qai_hub_models.models.resnext101
ResNeXt101Quantized qai_hub_models.models.resnext101_quantized
ResNeXt50 qai_hub_models.models.resnext50
ResNeXt50Quantized qai_hub_models.models.resnext50_quantized
ResNet101 qai_hub_models.models.resnet101
ResNet101Quantized qai_hub_models.models.resnet101_quantized
ResNet18 qai_hub_models.models.resnet18
ResNet18Quantized qai_hub_models.models.resnet18_quantized
ResNet50 qai_hub_models.models.resnet50
ResNet50Quantized qai_hub_models.models.resnet50_quantized
Shufflenet-v2 qai_hub_models.models.shufflenet_v2
Shufflenet-v2Quantized qai_hub_models.models.shufflenet_v2_quantized
SqueezeNet-1_1 qai_hub_models.models.squeezenet1_1
SqueezeNet-1_1Quantized qai_hub_models.models.squeezenet1_1_quantized
Swin-Base qai_hub_models.models.swin_base
Swin-Small qai_hub_models.models.swin_small
Swin-Tiny qai_hub_models.models.swin_tiny
VIT qai_hub_models.models.vit
VITQuantized qai_hub_models.models.vit_quantized
WideResNet50 qai_hub_models.models.wideresnet50
WideResNet50-Quantized qai_hub_models.models.wideresnet50_quantized
Image Editing
AOT-GAN qai_hub_models.models.aotgan
LaMa-Dilated qai_hub_models.models.lama_dilated
Super Resolution
ESRGAN qai_hub_models.models.esrgan
QuickSRNetLarge qai_hub_models.models.quicksrnetlarge
QuickSRNetLarge-Quantized qai_hub_models.models.quicksrnetlarge_quantized
QuickSRNetMedium qai_hub_models.models.quicksrnetmedium
QuickSRNetMedium-Quantized qai_hub_models.models.quicksrnetmedium_quantized
QuickSRNetSmall qai_hub_models.models.quicksrnetsmall
QuickSRNetSmall-Quantized qai_hub_models.models.quicksrnetsmall_quantized
Real-ESRGAN-General-x4v3 qai_hub_models.models.real_esrgan_general_x4v3
Real-ESRGAN-x4plus qai_hub_models.models.real_esrgan_x4plus
SESR-M5 qai_hub_models.models.sesr_m5
SESR-M5-Quantized qai_hub_models.models.sesr_m5_quantized
XLSR qai_hub_models.models.xlsr
XLSR-Quantized qai_hub_models.models.xlsr_quantized
Semantic Segmentation
DDRNet23-Slim qai_hub_models.models.ddrnet23_slim
DeepLabV3-Plus-MobileNet qai_hub_models.models.deeplabv3_plus_mobilenet
DeepLabV3-Plus-MobileNet-Quantized qai_hub_models.models.deeplabv3_plus_mobilenet_quantized
DeepLabV3-ResNet50 qai_hub_models.models.deeplabv3_resnet50
FCN-ResNet50 qai_hub_models.models.fcn_resnet50
FCN-ResNet50-Quantized qai_hub_models.models.fcn_resnet50_quantized
FFNet-122NS-LowRes qai_hub_models.models.ffnet_122ns_lowres
FFNet-40S qai_hub_models.models.ffnet_40s
FFNet-40S-Quantized qai_hub_models.models.ffnet_40s_quantized
FFNet-54S qai_hub_models.models.ffnet_54s
FFNet-54S-Quantized qai_hub_models.models.ffnet_54s_quantized
FFNet-78S qai_hub_models.models.ffnet_78s
FFNet-78S-LowRes qai_hub_models.models.ffnet_78s_lowres
FFNet-78S-Quantized qai_hub_models.models.ffnet_78s_quantized
FastSam-S qai_hub_models.models.fastsam_s
FastSam-X qai_hub_models.models.fastsam_x
MediaPipe-Selfie-Segmentation qai_hub_models.models.mediapipe_selfie
SINet qai_hub_models.models.sinet
Segment-Anything-Model qai_hub_models.models.sam
Unet-Segmentation qai_hub_models.models.unet_segmentation
YOLOv8-Segmentation qai_hub_models.models.yolov8_seg
Object Detection
DETR-ResNet101 qai_hub_models.models.detr_resnet101
DETR-ResNet101-DC5 qai_hub_models.models.detr_resnet101_dc5
DETR-ResNet50 qai_hub_models.models.detr_resnet50
DETR-ResNet50-DC5 qai_hub_models.models.detr_resnet50_dc5
FaceAttribNet qai_hub_models.models.face_attrib_net
Lightweight-Face-Detection qai_hub_models.models.face_det_lite
MediaPipe-Face-Detection qai_hub_models.models.mediapipe_face
MediaPipe-Face-Detection-Quantized qai_hub_models.models.mediapipe_face_quantized
MediaPipe-Hand-Detection qai_hub_models.models.mediapipe_hand
PPE-Detection qai_hub_models.models.gear_guard_net
PPE-Detection-Quantized qai_hub_models.models.gear_guard_net_quantized
Person-Foot-Detection qai_hub_models.models.foot_track_net
Person-Foot-Detection-Quantized qai_hub_models.models.foot_track_net_quantized
YOLOv11-Detection qai_hub_models.models.yolov11_det
YOLOv8-Detection qai_hub_models.models.yolov8_det
YOLOv8-Detection-Quantized qai_hub_models.models.yolov8_det_quantized
Yolo-NAS qai_hub_models.models.yolonas
Yolo-NAS-Quantized qai_hub_models.models.yolonas_quantized
Yolo-v6 qai_hub_models.models.yolov6
Yolo-v7 qai_hub_models.models.yolov7
Yolo-v7-Quantized qai_hub_models.models.yolov7_quantized
Pose Estimation
Facial-Landmark-Detection qai_hub_models.models.facemap_3dmm
HRNetPose qai_hub_models.models.hrnet_pose
HRNetPoseQuantized qai_hub_models.models.hrnet_pose_quantized
LiteHRNet qai_hub_models.models.litehrnet
MediaPipe-Pose-Estimation qai_hub_models.models.mediapipe_pose
OpenPose qai_hub_models.models.openpose
Posenet-Mobilenet qai_hub_models.models.posenet_mobilenet
Posenet-Mobilenet-Quantized qai_hub_models.models.posenet_mobilenet_quantized
Depth Estimation
Midas-V2 qai_hub_models.models.midas
Midas-V2-Quantized qai_hub_models.models.midas_quantized

Audio

Model README
Speech Recognition
HuggingFace-WavLM-Base-Plus qai_hub_models.models.huggingface_wavlm_base_plus
Whisper-Base-En qai_hub_models.models.whisper_base_en
Whisper-Small-En qai_hub_models.models.whisper_small_en
Whisper-Tiny-En qai_hub_models.models.whisper_tiny_en

Multimodal

Model README
OpenAI-Clip qai_hub_models.models.openai_clip
TrOCR qai_hub_models.models.trocr

Generative Ai

Model README
Image Generation
ControlNet qai_hub_models.models.controlnet_quantized
Riffusion qai_hub_models.models.riffusion_quantized
Stable-Diffusion-v1.5 qai_hub_models.models.stable_diffusion_v1_5_quantized
Stable-Diffusion-v2.1 qai_hub_models.models.stable_diffusion_v2_1_quantized
Text Generation
Baichuan2-7B qai_hub_models.models.baichuan2_7b_quantized
IBM-Granite-3B-Code-Instruct qai_hub_models.models.ibm_granite_3b_code_instruct
IndusQ-1.1B qai_hub_models.models.indus_1b_quantized
JAIS-6p7b-Chat qai_hub_models.models.jais_6p7b_chat_quantized
Llama-v2-7B-Chat qai_hub_models.models.llama_v2_7b_chat_quantized
Llama-v3-8B-Chat qai_hub_models.models.llama_v3_8b_chat_quantized
Llama-v3.1-8B-Chat qai_hub_models.models.llama_v3_1_8b_chat_quantized
Llama-v3.2-3B-Chat qai_hub_models.models.llama_v3_2_3b_chat_quantized
Mistral-3B qai_hub_models.models.mistral_3b_quantized
Mistral-7B-Instruct-v0.3 qai_hub_models.models.mistral_7b_instruct_v0_3_quantized
PLaMo-1B qai_hub_models.models.plamo_1b_quantized
Qwen2-7B-Instruct qai_hub_models.models.qwen2_7b_instruct_quantized

Need help?

Slack: https://aihub.qualcomm.com/community/slack

GitHub Issues: https://github.com/quic/ai-hub-models/issues

Email: ai-hub-support@qti.qualcomm.com.

LICENSE

Qualcomm® AI Hub Models is licensed under BSD-3. See the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

qai_hub_models-0.18.0-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file qai_hub_models-0.18.0-py3-none-any.whl.

File metadata

File hashes

Hashes for qai_hub_models-0.18.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9fcef31a6290b1b2496aaa94d55a77920a3645f12695796eac937bbdbbb49941
MD5 6cda4706d4e9f3764c497dbbd066c0c9
BLAKE2b-256 561ac3e6739a80969e3072c6060db914394705a410616dbae04a9f073cc8ee28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page