Skip to main content

No project description provided

Project description

Qamomile

PyPI version License

Qamomile is a powerful SDK designed for quantum optimization algorithms, specializing in the conversion of mathematical models into quantum circuits. It serves as a bridge between classical optimization problems and quantum computing solutions.

Documentation: https://jij-inc.github.io/Qamomile/

Features

  • Versatile Compatibility: Supports leading quantum circuit SDKs including Qiskit and QuriParts.
  • Advanced Algorithm Support: Implements sophisticated encoding and algorithms like QAOA and QRAO.
  • Flexible Model Conversion: Utilizes JijModeling for describing mathematical models and converting them to various quantum circuit SDKs.
  • Intermediate Representation: Capable of representing both Hamiltonians and quantum circuits as intermediate forms.
  • Standalone Functionality: Can implement quantum circuits independently, similar to other quantum circuit SDKs.

Installation

To install Qamomile, use pip:

pip install qamomile

For optional dependencies:

pip install qamomile[qiskit]  # For Qiskit integration
pip install qamomile[quri-parts]  # For QuriParts integration

Quick Start

Here's a simple example of how to use Qamomile with QAOA:

import jijmodeling as jm
import jijmodeling_transpiler.core as jmt
from qamomile.core.converters.qaoa import QAOAConverter
from qamomile.qiskit.transpiler import QiskitTranspiler

# Define QUBO problem
Q = jm.Placeholder("Q", ndim=2)
n = Q.len_at(0, latex="n")
x = jm.BinaryVar("x", shape=(n,))
problem = jm.Problem("qubo")
i, j = jm.Element("i", n), jm.Element("j", n)
problem += jm.sum([i, j], Q[i, j] * x[i] * x[j])

# Prepare instance data
instance_data = {"Q": [[0.1, 0.2, -0.1], [0.2, 0.3, 0.4], [-0.1, 0.4, 0.0]]}

# Compile the problem
compiled_instance = jmt.compile_model(problem, instance_data)

# Create QAOA converter
qaoa_converter = QAOAConverter(compiled_instance)

# Create Qiskit transpiler
qiskit_transpiler = QiskitTranspiler()

# Get QAOA circuit
p = 2  # Number of QAOA layers
qaoa_circuit = qaoa_converter.get_qaoa_ansatz(p)

# Convert to Qiskit circuit
qiskit_circuit = qiskit_transpiler.transpile_circuit(qaoa_circuit)

# ... (continue with quantum execution and result processing)

Documentation

For more detailed information, please refer to our documentation.

Contributing

We welcome contributions! Please see our Contributing Guide for more details.

License

Qamomile is released under the Apache 2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qamomile-0.4.0.tar.gz (31.6 kB view details)

Uploaded Source

Built Distribution

qamomile-0.4.0-py3-none-any.whl (46.0 kB view details)

Uploaded Python 3

File details

Details for the file qamomile-0.4.0.tar.gz.

File metadata

  • Download URL: qamomile-0.4.0.tar.gz
  • Upload date:
  • Size: 31.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for qamomile-0.4.0.tar.gz
Algorithm Hash digest
SHA256 6e1cdcce37f55df5b9607eb751f8be07d478ce5d3959a0ce45678ed796778bee
MD5 afac1e2eb0926257892a3206e7f3d5ed
BLAKE2b-256 bec5b07810b2f77c823799b74ed9f89aeadb1bfdc2a4698376ce66cabe88ad0d

See more details on using hashes here.

File details

Details for the file qamomile-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: qamomile-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 46.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for qamomile-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b712b76867f52b57a333a1279b581046b7d13a3254f8127acd87102214f3df8b
MD5 65224b0889d1b72bd9f44a2b357954de
BLAKE2b-256 af5f2de4953f926be6d249b62cc05005f34cd87158f928fa6508287f2232cab5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page