Skip to main content

No project description provided

Project description

Qamomile

PyPI version License

Qamomile is a powerful SDK designed for quantum optimization algorithms, specializing in the conversion of mathematical models into quantum circuits. It serves as a bridge between classical optimization problems and quantum computing solutions.

Documentation: https://jij-inc.github.io/Qamomile/

Features

  • Versatile Compatibility: Supports leading quantum circuit SDKs including Qiskit and QuriParts.
  • Advanced Algorithm Support: Implements sophisticated encoding and algorithms like QAOA and QRAO.
  • Flexible Model Conversion: Utilizes JijModeling for describing mathematical models and converting them to various quantum circuit SDKs.
  • Intermediate Representation: Capable of representing both Hamiltonians and quantum circuits as intermediate forms.
  • Standalone Functionality: Can implement quantum circuits independently, similar to other quantum circuit SDKs.

Installation

To install Qamomile, use pip:

pip install qamomile

For optional dependencies:

pip install qamomile[qiskit]  # For Qiskit integration
pip install qamomile[quri-parts]  # For QuriParts integration

Quick Start

Here's a simple example of how to use Qamomile with QAOA:

import jijmodeling as jm
import jijmodeling_transpiler as jmt
from qamomile.core.qaoa import QAOAConverter
from qamomile.qiskit.transpiler import QiskitTranspiler

# Define QUBO problem
Q = jm.Placeholder("Q", ndim=2)
n = Q.len_at(0, latex="n")
x = jm.BinaryVar("x", shape=(n,))
problem = jm.Problem("qubo")
i, j = jm.Element("i", n), jm.Element("j", n)
problem += jm.sum([i, j], Q[i, j] * x[i] * x[j])

# Prepare instance data
instance_data = {"Q": [[0.1, 0.2, -0.1], [0.2, 0.3, 0.4], [-0.1, 0.4, 0.0]]}

# Compile the problem
compiled_instance = jmt.compile_model(problem, instance_data)

# Create QAOA converter
qaoa_converter = QAOAConverter(compiled_instance)

# Create Qiskit transpiler
qiskit_transpiler = QiskitTranspiler()

# Get QAOA circuit
p = 2  # Number of QAOA layers
qaoa_circuit = qaoa_converter.get_qaoa_ansatz(p)

# Convert to Qiskit circuit
qiskit_circuit = qiskit_transpiler.transpile_circuit(qaoa_circuit)

# ... (continue with quantum execution and result processing)

Documentation

For more detailed information, please refer to our documentation.

Contributing

We welcome contributions! Please see our Contributing Guide for more details.

License

Qamomile is released under the Apache 2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qamomile-0.2.0.tar.gz (22.5 kB view details)

Uploaded Source

Built Distribution

qamomile-0.2.0-py3-none-any.whl (29.8 kB view details)

Uploaded Python 3

File details

Details for the file qamomile-0.2.0.tar.gz.

File metadata

  • Download URL: qamomile-0.2.0.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for qamomile-0.2.0.tar.gz
Algorithm Hash digest
SHA256 7cd6c71f64bf7ae62055962de9ac65e25d2efccc899ea78d04162b2accd89192
MD5 400ffc6223a288d7baf19c75470dfd72
BLAKE2b-256 91c6f3c5d3e9d38bc6e482705b0a565b307c3d5c71ee58eb4b96f0c34f6ee2a9

See more details on using hashes here.

File details

Details for the file qamomile-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: qamomile-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 29.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for qamomile-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 47f6422c77eacc4a063d15245aceaeb641344412cf827032f5299c480c31ac9e
MD5 e9045fb130d0417d6f16d4ac56b06f0e
BLAKE2b-256 d4a5590e84cf43bfe6af1025784752e30a74c9ed36ad25b09958c3937e61f3e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page