Skip to main content

No project description provided

Project description

Qamomile

PyPI version License

Qamomile is a powerful SDK designed for quantum optimization algorithms, specializing in the conversion of mathematical models into quantum circuits. It serves as a bridge between classical optimization problems and quantum computing solutions.

Documentation: https://jij-inc.github.io/Qamomile/

Features

  • Versatile Compatibility: Supports leading quantum circuit SDKs including Qiskit and QuriParts.
  • Advanced Algorithm Support: Implements sophisticated encoding and algorithms like QAOA and QRAO.
  • Flexible Model Conversion: Utilizes JijModeling for describing mathematical models and converting them to various quantum circuit SDKs.
  • Intermediate Representation: Capable of representing both Hamiltonians and quantum circuits as intermediate forms.
  • Standalone Functionality: Can implement quantum circuits independently, similar to other quantum circuit SDKs.

Installation

To install Qamomile, use pip:

pip install qamomile

For optional dependencies:

pip install qamomile[qiskit]  # For Qiskit integration
pip install qamomile[quri-parts]  # For QuriParts integration

Quick Start

Here's a simple example of how to use Qamomile with QAOA:

import jijmodeling as jm
import jijmodeling_transpiler as jmt
from qamomile.core.qaoa import QAOAConverter
from qamomile.qiskit.transpiler import QiskitTranspiler

# Define QUBO problem
Q = jm.Placeholder("Q", ndim=2)
n = Q.len_at(0, latex="n")
x = jm.BinaryVar("x", shape=(n,))
problem = jm.Problem("qubo")
i, j = jm.Element("i", n), jm.Element("j", n)
problem += jm.sum([i, j], Q[i, j] * x[i] * x[j])

# Prepare instance data
instance_data = {"Q": [[0.1, 0.2, -0.1], [0.2, 0.3, 0.4], [-0.1, 0.4, 0.0]]}

# Compile the problem
compiled_instance = jmt.compile_model(problem, instance_data)

# Create QAOA converter
qaoa_converter = QAOAConverter(compiled_instance)

# Create Qiskit transpiler
qiskit_transpiler = QiskitTranspiler()

# Get QAOA circuit
p = 2  # Number of QAOA layers
qaoa_circuit = qaoa_converter.get_qaoa_ansatz(p)

# Convert to Qiskit circuit
qiskit_circuit = qiskit_transpiler.transpile_circuit(qaoa_circuit)

# ... (continue with quantum execution and result processing)

Documentation

For more detailed information, please refer to our documentation.

Contributing

We welcome contributions! Please see our Contributing Guide for more details.

License

Qamomile is released under the Apache 2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qamomile-0.3.1.tar.gz (29.5 kB view details)

Uploaded Source

Built Distribution

qamomile-0.3.1-py3-none-any.whl (40.7 kB view details)

Uploaded Python 3

File details

Details for the file qamomile-0.3.1.tar.gz.

File metadata

  • Download URL: qamomile-0.3.1.tar.gz
  • Upload date:
  • Size: 29.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for qamomile-0.3.1.tar.gz
Algorithm Hash digest
SHA256 66ac2b468d62626bbf528bae762c2aa9035bcbb39604f7c092ec2272b83eef70
MD5 c3fbc49c768191939a410ef002c678cb
BLAKE2b-256 026826383764f7900ef9e36ff87c31bcd701d5947c13d1421573e1f0df160d04

See more details on using hashes here.

File details

Details for the file qamomile-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: qamomile-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 40.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for qamomile-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e0fd9885f42f2717fa8d33ca691e0c3581030c5c2d1c0a62ec783744774be6de
MD5 5fd238d0f47c7e2988d59ebec88e13a0
BLAKE2b-256 4d7eb0fc1d2fdacb84971a59e7674de987fbed2095e39a8ef142ea830fb12842

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page