Unofficial implementation of QaNER: Prompting Question Answering Models for Few-shot Named Entity Recognition.
Project description
QaNER
Unofficial implementation of QaNER: Prompting Question Answering Models for Few-shot Named Entity Recognition.
You can adopt this pipeline for arbitrary BIO-markup data.
Installation
pip install qaner
CoNLL-2003
Pipeline results on CoNLL-2003 dataset:
How to use
Training
Script for training QaNER model:
qaner-train \
--bert_model_name 'bert-base-uncased' \
--path_to_prompt_mapper 'data/conll2003/prompt_mapper.json' \
--path_to_train_data 'data/conll2003/train.bio' \
--path_to_test_data 'data/conll2003/test.bio' \
--path_to_save_model 'dayyass/qaner-conll-bert-base-uncased' \
--n_epochs 2 \
--batch_size 128 \
--learning_rate 1e-5 \
--seed 42 \
--log_dir 'runs/qaner'
Required arguments:
- --bert_model_name - base bert model for QaNER fine-tuning
- --path_to_prompt_mapper - path to prompt mapper json file
- --path_to_train_data - path to train data (BIO-markup)
- --path_to_test_data - path to test data (BIO-markup)
- --path_to_save_model - path to save trained QaNER model
- --n_epochs - number of epochs to fine-tune
- --batch_size - batch size
- --learning_rate - learning rate
Optional arguments:
- --seed - random seed for reproducibility (default: 42)
- --log_dir - tensorboard log_dir (default: 'runs/qaner')
Infrerence
Script for inference trained QaNER model:
qaner-inference \
--context 'EU rejects German call to boycott British lamb .' \
--question 'What is the organization?' \
--path_to_prompt_mapper 'data/conll2003/prompt_mapper.json' \
--path_to_trained_model 'dayyass/qaner-conll-bert-base-uncased' \
--n_best_size 1 \
--max_answer_length 100 \
--seed 42
Result:
question: What is the organization?
context: EU rejects German call to boycott British lamb .
answer: [Span(token='EU', label='ORG', start_context_char_pos=0, end_context_char_pos=2)]
Required arguments:
- --context - sentence to extract entities from
- --question - question prompt with entity name to extract (examples below)
- --path_to_prompt_mapper - path to prompt mapper json file
- --path_to_trained_model - path to trained QaNER model
- --n_best_size - number of best QA answers to consider
Optional arguments:
- --max_answer_length - entity max length to eliminate very long entities (default: 100)
- --seed - random seed for reproducibility (default: 42)
Possible inference questions for CoNLL-2003:
- What is the location? (LOC)
- What is the person? (PER)
- What is the organization? (ORG)
- What is the miscellaneous entity? (MISC)
Requirements
Python >= 3.7
Citation
@misc{liu2022qaner,
title = {QaNER: Prompting Question Answering Models for Few-shot Named Entity Recognition},
author = {Andy T. Liu and Wei Xiao and Henghui Zhu and Dejiao Zhang and Shang-Wen Li and Andrew Arnold},
year = {2022},
eprint = {2203.01543},
archivePrefix = {arXiv},
primaryClass = {cs.LG}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qaner-0.1.1.tar.gz
(11.4 kB
view details)
Built Distribution
qaner-0.1.1-py3-none-any.whl
(14.2 kB
view details)
File details
Details for the file qaner-0.1.1.tar.gz
.
File metadata
- Download URL: qaner-0.1.1.tar.gz
- Upload date:
- Size: 11.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8e4f0f95e40b5041dd86eee2bb29d144a7cdafbb4556d859a77431cb67c538b |
|
MD5 | 6c7ffdaba254fc09742034937f2b0ca9 |
|
BLAKE2b-256 | 452cc6ed17d088dd7860aa33fe671dadfbe102c47eaf4ef578b65159df396a55 |
File details
Details for the file qaner-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: qaner-0.1.1-py3-none-any.whl
- Upload date:
- Size: 14.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7a107579016e40b2289daa7b3c7df963963107b343e233085e91dfe410556fb |
|
MD5 | af4adab9f99c7795b59b47200b7329c1 |
|
BLAKE2b-256 | 333a92f2b5e5327327c7e8d90a3fcf34eb2278ae692b24e17640ed24b85d4b55 |