Skip to main content

quantum bettabilitarianism

Project description

Qbism

PyPI version

python tools for the budding quantum bettabilitarian

Installation

pip install qbism

Note that qbism relies on qutip!

Usage

Let's start off with a random density matrix:

from qbism import *
import qutip as qt
import numpy as np

d = 2
rho = qt.rand_dm(d)

We construct a random Weyl-Heisenberg IC-POVM, and get the magical quantum coherence matrix. We find the probabilities with respect to this POVM.

povm = weyl_heisenberg_povm(qt.rand_ket(d))
phi = povm_phi(povm)
p = dm_probs(rho, povm)
print("probs: %s" % p)
probs: [0.20215649 0.20215649 0.29784351 0.29784351]

We can compare the classical probabilities (for a Von Neumann measurement after a POVM measurement whose outcome we are ignorant of) to the the quantum probabilities (in the case where we go directly to the Von Neumann measurement):

H = qt.rand_herm(d)
vn = [v*v.dag() for v in H.eigenstates()[1]]

classical_probs = conditional_probs(vn, povm) @ p
quantum_probs = conditional_probs(vn, povm) @ phi @ p

print("classsical probs: %s" % classical_probs)
print("quantum probs: %s" % quantum_probs)

post_povm_rho = sum([(e*rho).tr()*(e/e.tr()) for e in povm])
assert np.allclose(classical_probs, [(v*post_povm_rho).tr() for v in vn])
assert np.allclose(quantum_probs, [(v*rho).tr() for v in vn])
classsical probs: [0.55802905 0.44197095]
quantum probs: [0.65778315 0.34221685]

Now let's get a SIC-POVM and explore time evolution:

sic = sic_povm(d)
sic_phi = povm_phi(sic)
sic_p = dm_probs(rho, sic)

U = qt.rand_unitary(d)
evolved_sic = [U*e*U.dag() for e in sic]
R = conditional_probs(evolved_sic, sic).T

time_evolved_sic_p = R @ sic_phi @ sic_p
print("time evolved probs: %s" % time_evolved_sic_p)
assert np.allclose(dm_probs(U*rho*U.dag(), sic), time_evolved_sic_p)
time evolved probs: [0.20445193 0.20445193 0.29554807 0.29554807]

We could also use:

time_evolved_sic_p2 = povm_map([U], sic) @ sic_phi @ sic_p
assert np.allclose(time_evolved_sic_p, time_evolved_sic_p2)

Finally, let's check out partial traces:

entangled = qt.rand_dm(4)
entangled.dims = [[2,2],[2,2]]

povm2 = weyl_heisenberg_povm(qt.rand_ket(2))
povm4 = apply_dims(weyl_heisenberg_povm(qt.rand_ket(4)), [2,2])
phi = povm_phi(povm4)
p = dm_probs(entangled, povm4)

ptrA = povm_map(partial_trace_krauss(0, [2,2]), povm4, povm2)
ptrB = povm_map(partial_trace_krauss(1, [2,2]), povm4, povm2)

assert np.allclose(dm_probs(entangled.ptrace(0), povm2), ptrA @ phi @ p)
assert np.allclose(dm_probs(entangled.ptrace(1), povm2), ptrB @ phi @ p)

Check out the tutorial for the full story!

Thanks to nbdev!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qbism-0.0.7.tar.gz (264.0 kB view details)

Uploaded Source

Built Distribution

qbism-0.0.7-py3-none-any.whl (295.0 kB view details)

Uploaded Python 3

File details

Details for the file qbism-0.0.7.tar.gz.

File metadata

  • Download URL: qbism-0.0.7.tar.gz
  • Upload date:
  • Size: 264.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for qbism-0.0.7.tar.gz
Algorithm Hash digest
SHA256 daea7dd20e8b2710b11927e87eb00f0c74917e376add89df77846d18f0263aa9
MD5 253497f33786e1160265e0bfeda87094
BLAKE2b-256 32e2f2447ec46ab02f063ce10502c4d3376584a260fdefdfee67bfaf95885210

See more details on using hashes here.

File details

Details for the file qbism-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: qbism-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 295.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for qbism-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 cf7cd82045f559bd36baf9486daaa8d841f13015d1f479f8ad2f4b88cbf06e90
MD5 6aff90d3b8f8a5fb3d7c80fb7c02ca6a
BLAKE2b-256 308899b626b3d9afab7c4ad8d8d984466bbcaddbe4b33dff4159be6a20df04aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page