Skip to main content

quantum bettabilitarianism

Project description

QBism

PyPI version

python tools for the budding quantum bettabilitarian

Installation

pip install qbism

Note that qbism relies on qutip!

Usage

Let's start off with a random density matrix:

from qbism import *
import qutip as qt
import numpy as np

d = 2
rho = qt.rand_dm(d)

We construct a random Weyl-Heisenberg IC-POVM, and get the magical quantum coherence matrix. We find the probabilities with respect to this POVM.

povm = weyl_heisenberg_povm(qt.rand_ket(d))
phi = povm_phi(povm)
p = dm_probs(rho, povm)
print("probs: %s" % p)
probs: [0.20215649 0.20215649 0.29784351 0.29784351]

We can compare the classical probabilities (for a Von Neumann measurement after a POVM measurement whose outcome we are ignorant of) to the the quantum probabilities (in the case where we go directly to the Von Neumann measurement):

H = qt.rand_herm(d)
vn = [v*v.dag() for v in H.eigenstates()[1]]

classical_probs = conditional_probs(vn, povm) @ p
quantum_probs = conditional_probs(vn, povm) @ phi @ p

print("classsical probs: %s" % classical_probs)
print("quantum probs: %s" % quantum_probs)

post_povm_rho = sum([(e*rho).tr()*(e/e.tr()) for e in povm])
assert np.allclose(classical_probs, [(v*post_povm_rho).tr() for v in vn])
assert np.allclose(quantum_probs, [(v*rho).tr() for v in vn])
classsical probs: [0.55802905 0.44197095]
quantum probs: [0.65778315 0.34221685]

Now let's get a SIC-POVM and explore time evolution:

sic = sic_povm(d)
sic_phi = povm_phi(sic)
sic_p = dm_probs(rho, sic)

U = qt.rand_unitary(d)
evolved_sic = [U*e*U.dag() for e in sic]
R = conditional_probs(evolved_sic, sic).T

time_evolved_sic_p = R @ sic_phi @ sic_p
print("time evolved probs: %s" % time_evolved_sic_p)
assert np.allclose(dm_probs(U*rho*U.dag(), sic), time_evolved_sic_p)
time evolved probs: [0.20445193 0.20445193 0.29554807 0.29554807]

We could also use:

time_evolved_sic_p2 = povm_map([U], sic) @ sic_phi @ sic_p
assert np.allclose(time_evolved_sic_p, time_evolved_sic_p2)

Finally, let's check out partial traces:

entangled = qt.rand_dm(4)
entangled.dims = [[2,2],[2,2]]

povm2 = weyl_heisenberg_povm(qt.rand_ket(2))
povm4 = apply_dims(weyl_heisenberg_povm(qt.rand_ket(4)), [2,2])
phi = povm_phi(povm4)
p = dm_probs(entangled, povm4)

ptrA = povm_map(partial_trace_kraus(0, [2,2]), povm4, povm2)
ptrB = povm_map(partial_trace_kraus(1, [2,2]), povm4, povm2)

assert np.allclose(dm_probs(entangled.ptrace(0), povm2), ptrA @ phi @ p)
assert np.allclose(dm_probs(entangled.ptrace(1), povm2), ptrB @ phi @ p)

Check out the tutorial for the full story!

Thanks to nbdev!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qbism-0.1.0.tar.gz (263.9 kB view details)

Uploaded Source

Built Distribution

qbism-0.1.0-py3-none-any.whl (294.4 kB view details)

Uploaded Python 3

File details

Details for the file qbism-0.1.0.tar.gz.

File metadata

  • Download URL: qbism-0.1.0.tar.gz
  • Upload date:
  • Size: 263.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for qbism-0.1.0.tar.gz
Algorithm Hash digest
SHA256 3f6bcd9f68d704d44ce077e2b2bce6548630b491f8d87709f381350d1ee45b0f
MD5 cc9f2f691bd3ac11feaf3a7fd33198b2
BLAKE2b-256 181aeeabf94087638482315ede1db52dc4f672d65b1448d00a8e349d46c740db

See more details on using hashes here.

File details

Details for the file qbism-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: qbism-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 294.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for qbism-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 68d3fd2b521f833fc529ffce56711c365e2c347265b313103134a59599cb4db0
MD5 768cf9fefe143f3862e5b399e7605d14
BLAKE2b-256 784dc5e69f608932cbfe0b795d92da6b240349b806771203d29fed35da5f7adb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page