Skip to main content

quantum bettabilitarianism

Project description


PyPI version

python tools for the budding quantum bettabilitarian


pip install qbism

Note that qbism relies on qutip!


Let's start off with a random density matrix:

from qbism import *
import qutip as qt
import numpy as np

d = 2
rho = qt.rand_dm(d)

We construct a random Weyl-Heisenberg IC-POVM, and get the magical quantum coherence matrix. We find the probabilities with respect to this POVM.

povm = weyl_heisenberg_povm(qt.rand_ket(d))
phi = povm_phi(povm)
p = dm_probs(rho, povm)
print("probs: %s" % p)
probs: [0.20215649 0.20215649 0.29784351 0.29784351]

We can compare the classical probabilities (for a Von Neumann measurement after a POVM measurement whose outcome we are ignorant of) to the the quantum probabilities (in the case where we go directly to the Von Neumann measurement):

H = qt.rand_herm(d)
vn = [v*v.dag() for v in H.eigenstates()[1]]

classical_probs = conditional_probs(vn, povm) @ p
quantum_probs = conditional_probs(vn, povm) @ phi @ p

print("classsical probs: %s" % classical_probs)
print("quantum probs: %s" % quantum_probs)

post_povm_rho = sum([(e*rho).tr()*(e/ for e in povm])
assert np.allclose(classical_probs, [(v*post_povm_rho).tr() for v in vn])
assert np.allclose(quantum_probs, [(v*rho).tr() for v in vn])
classsical probs: [0.55802905 0.44197095]
quantum probs: [0.65778315 0.34221685]

Now let's get a SIC-POVM and explore time evolution:

sic = sic_povm(d)
sic_phi = povm_phi(sic)
sic_p = dm_probs(rho, sic)

U = qt.rand_unitary(d)
evolved_sic = [U*e*U.dag() for e in sic]
R = conditional_probs(evolved_sic, sic).T

time_evolved_sic_p = R @ sic_phi @ sic_p
print("time evolved probs: %s" % time_evolved_sic_p)
assert np.allclose(dm_probs(U*rho*U.dag(), sic), time_evolved_sic_p)
time evolved probs: [0.20445193 0.20445193 0.29554807 0.29554807]

We could also use:

time_evolved_sic_p2 = povm_map([U], sic) @ sic_phi @ sic_p
assert np.allclose(time_evolved_sic_p, time_evolved_sic_p2)

Finally, let's check out partial traces:

entangled = qt.rand_dm(4)
entangled.dims = [[2,2],[2,2]]

povm2 = weyl_heisenberg_povm(qt.rand_ket(2))
povm4 = apply_dims(weyl_heisenberg_povm(qt.rand_ket(4)), [2,2])
phi = povm_phi(povm4)
p = dm_probs(entangled, povm4)

ptrA = povm_map(partial_trace_kraus(0, [2,2]), povm4, povm2)
ptrB = povm_map(partial_trace_kraus(1, [2,2]), povm4, povm2)

assert np.allclose(dm_probs(entangled.ptrace(0), povm2), ptrA @ phi @ p)
assert np.allclose(dm_probs(entangled.ptrace(1), povm2), ptrB @ phi @ p)

Check out the tutorial for the full story!

Thanks to nbdev!

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qbism- (265.5 kB view hashes)

Uploaded source

Built Distribution

qbism- (297.2 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page