Skip to main content

A Python toolkit for cross-framework abstraction of quantum programs.

Project description

qbraid-sdk-header

CI codecov Documentation Status PyPI version Downloads License Discord

The qBraid-SDK is a Python toolkit for cross-framework abstraction, transpilation, and execution of quantum programs.

Features

  • Unified quantum frontend interface. Transpile quantum circuits between supported packages. Leverage the capabilities of multiple frontends through simple, consistent protocols.
  • Build once, target many. Create quantum programs using your preferred circuit-building package, and execute on any backend that interfaces with a supported frontend.
  • Benchmark, compare, interpret results. Built-in compatible post-processing enables comparing results between runs and across backends.

Installation & Setup

qbraid-sdk-env

For the best experience, install the qBraid-SDK environment on lab.qbraid.com. Login (or create an account) and follow the steps to install an environment.

Using the SDK on qBraid Lab means direct, pre-configured access to all Amazon Braket supported devices with no additional access keys or API tokens required. See qBraid Quantum Jobs for more.

Local install

The qBraid-SDK, and all of its dependencies, can also be installed using pip:

pip install qbraid

You can also install from source by cloning this repository and running a pip install command in the root directory of the repository:

git clone https://github.com/qBraid/qBraid.git
cd qBraid
pip install -e '.[all]'

Note: The qBraid-SDK requires Python 3.10 or greater.

If using locally, follow linked instructions to configure your qBraid, AWS, and IBMQ credentials.

Check version

You can view the version of the qBraid-SDK you have installed within Python using the following:

In [1]: import qbraid

In [2]: qbraid.__version__

Documentation & Tutorials

qBraid documentation is available at docs.qbraid.com.

See also:

Quickstart

Transpiler

Construct a quantum program of any supported program type,

>>> from qbraid import QPROGRAM_LIBS
>>> QPROGRAM_LIBS
['braket', 'cirq', 'qiskit', 'pyquil', 'pytket', 'qasm2', 'qasm3']

and use the circuit_wrapper() to convert to any other supported program type:

>>> from qbraid import circuit_wrapper
>>> from qbraid.programs import random_circuit
>>> qiskit_circuit = random_circuit("qiskit")
>>> cirq_circuit = circuit_wrapper(qiskit_circuit).transpile("cirq")
>>> print(qiskit_circuit)
          ┌────────────┐
q_0: ──■──┤ Rx(3.0353) 
     ┌─┴─┐└───┬────┬───┘
q_1:  H ├────┤ X ├────
     └───┘    └────┘
>>> print(cirq_circuit)
0: ───@───Rx(0.966π)───
      
1: ───H───X^0.5────────

Devices & Jobs

Search for quantum backend(s) on which to execute your program.

>>> from qbraid import get_devices
>>> get_devices()
Device status updated 0 minutes ago

Device ID                           Status
---------                           ------
aws_oqc_lucy                        ONLINE
aws_ionq_aria2                      OFFLINE
aws_rigetti_aspen_m3                ONLINE
ibm_q_brisbane                      ONLINE
...

Apply the device_wrapper(), and send quantum jobs to any supported backend, from any supported program type:

>>> from qbraid import device_wrapper, get_jobs
>>> aws_device = device_wrapper("aws_oqc_lucy")
>>> ibm_device = device_wrapper("ibm_q_brisbane")
>>> aws_job = aws_device.run(qiskit_circuit, shots=1000)
>>> ibm_job = ibm_device.run(cirq_circuit, shots=1000)
>>> get_jobs()
Displaying 2 most recent jobs:

Job ID                                              Submitted                  Status
------                                              ---------                  ------
aws_oqc_lucy-exampleuser-qjob-zzzzzzz...            2023-05-21T21:13:47.220Z   QUEUED
ibm_q_brisbane-exampleuser-qjob-xxxxxxx...          2023-05-21T21:13:48.220Z   RUNNING
...

Compare results in a consistent, unified format:

>>> aws_result = aws_job.result()
>>> ibm_result = ibm_job.result()
>>> aws_result.measurement_counts()
{'00': 483, '01': 14, '10': 486, '11': 17}
>>> ibm_result.measurement_counts()
{'00': 496, '01': 12, '10': 479, '11': 13}

Local account setup

api_key

To use the qBraid-SDK locally (outside of qBraid Lab), you must add your account credentials:

  1. Create a qBraid account or log in to your existing account by visiting account.qbraid.com

  2. Copy your API Key token from the left side of your account page:

  3. Save your API key from step 2 by calling QbraidSession.save_config():

from qbraid.api import QbraidSession

session = QbraidSession(api_key='API_KEY')
session.save_config()

The command above stores your credentials locally in a configuration file ~/.qbraid/qbraidrc, where ~ corresponds to your home ($HOME) directory. Once saved, you can then connect to the qBraid API and leverage functions such as get_devices() and get_jobs().

Load Account from Environment Variables

Alternatively, the qBraid-SDK can discover credentials from environment variables:

export JUPYTERHUB_USER='USER_EMAIL'
export QBRAID_API_KEY='QBRAID_API_KEY'

Then instantiate the session without any arguments

from qbraid.api import QbraidSession

session = QbraidSession()

Launch on qBraid

The "Launch on qBraid" button (below) can be added to any public GitHub repository. Clicking on it automaically opens qBraid Lab, and performs a git clone of the project repo into your account's home directory. Copy the code below, and replace YOUR-USERNAME and YOUR-REPOSITORY with your GitHub info.

Use the badge in your project's README.md:

[<img src="https://qbraid-static.s3.amazonaws.com/logos/Launch_on_qBraid_white.png" width="150">](https://account.qbraid.com?gitHubUrl=https://github.com/YOUR-USERNAME/YOUR-REPOSITORY.git)

Use the badge in your project's README.rst:

.. image:: https://qbraid-static.s3.amazonaws.com/logos/Launch_on_qBraid_white.png
    :target: https://account.qbraid.com?gitHubUrl=https://github.com/YOUR-USERNAME/YOUR-REPOSITORY.git
    :width: 150px

Contributing

License

GNU General Public License v3.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qbraid-0.5.0.dev20231209224540.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

qbraid-0.5.0.dev20231209224540-py3-none-any.whl (194.7 kB view details)

Uploaded Python 3

File details

Details for the file qbraid-0.5.0.dev20231209224540.tar.gz.

File metadata

File hashes

Hashes for qbraid-0.5.0.dev20231209224540.tar.gz
Algorithm Hash digest
SHA256 f509855496c144ac07d483d8f935d318cda14827aec37011096aa3333f653f02
MD5 94c9b9ce8415af0c51ba7c70a156b41a
BLAKE2b-256 ccaf85a35afb96906f8ff28ea33a8bd1612470e48c1045326cf56a95b3e38599

See more details on using hashes here.

File details

Details for the file qbraid-0.5.0.dev20231209224540-py3-none-any.whl.

File metadata

File hashes

Hashes for qbraid-0.5.0.dev20231209224540-py3-none-any.whl
Algorithm Hash digest
SHA256 e081e21b42e7ef19ba37599495879da9849683d29b623a833d99fe39ce5a4f66
MD5 7ab61826356924cc5b0b57091b2a525d
BLAKE2b-256 f8b1f29bf03eb5eee25b263f17bd44ce1697f47136dcff90293a0dc6efc9813a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page