Skip to main content

An integration of Qdrant ANN vector database backend with Haystack

Project description

qdrant-haystack

An integration of Qdrant vector database with Haystack by deepset.

The library finally allows using Qdrant as a document store, and provides an in-place replacement for any other vector embeddings store. Thus, you should expect any kind of application to be working smoothly just by changing the provider to QdrantDocumentStore.

Installation

qdrant-haystack might be installed as any other Python library, using pip or poetry:

pip install qdrant-haystack
poetry add qdrant-haystack

Usage

Once installed, you can already start using QdrantDocumentStore as any other store that supports embeddings.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    url="localhost",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

The list of parameters accepted by QdrantDocumentStore is complementary to those used in the official Python Qdrant client.

Connecting to Qdrant Cloud cluster

If you prefer not to manage your own Qdrant instance, Qdrant Cloud might be a better option.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    url="https://YOUR-CLUSTER-URL.aws.cloud.qdrant.io",
    index="Document",
    api_key="<< YOUR QDRANT CLOUD API KEY >>",
    embedding_dim=512,
    recreate_index=True,
)

There is no difference in terms of functionality between local instances and cloud clusters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qdrant_haystack-0.0.4.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

qdrant_haystack-0.0.4-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file qdrant_haystack-0.0.4.tar.gz.

File metadata

  • Download URL: qdrant_haystack-0.0.4.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for qdrant_haystack-0.0.4.tar.gz
Algorithm Hash digest
SHA256 a3b89a5d905be7ecb3c13415bf200ab8849ca9c9c9ad2b1e37a0f8d35e0e92e6
MD5 16265056e7cfb01b9311d43656ae9ec4
BLAKE2b-256 0f91fc01cafbe11505cd60112ac58216b48bf044c21070977e6e4a52d716c382

See more details on using hashes here.

File details

Details for the file qdrant_haystack-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for qdrant_haystack-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f8d91e74595ab0ef5579917806eb3310e9079409366c0ca98e52dd997930de14
MD5 501df1e2648d262496fc9396939f8fc3
BLAKE2b-256 f7f2f6435c3c2b664794e15d9663e63c6a560a26d71ac4fa21f56ca449dad97f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page