Skip to main content

An integration of Qdrant ANN vector database backend with Haystack

Project description

qdrant-haystack

An integration of Qdrant vector database with Haystack by deepset.

The library finally allows using Qdrant as a document store, and provides an in-place replacement for any other vector embeddings store. Thus, you should expect any kind of application to be working smoothly just by changing the provider to QdrantDocumentStore.

Installation

qdrant-haystack might be installed as any other Python library, using pip or poetry:

pip install qdrant-haystack
poetry add qdrant-haystack

Usage

Once installed, you can already start using QdrantDocumentStore as any other store that supports embeddings.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    "localhost",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

The list of parameters accepted by QdrantDocumentStore is complementary to those used in the official Python Qdrant client.

Using local in-memory / disk-persisted mode

Qdrant Python client, from version 1.1.1, supports local in-memory/disk-persisted mode. That's a good choice for any test scenarios and quick experiments in which you do not plan to store lots of vectors. In such a case spinning a Docker container might be even not required.

The local mode was also implemented in qdrant-haystack integration.

In-memory storage

In case you want to have a transient storage, for example in case of automated tests launched during your CI/CD pipeline, using Qdrant Local mode with in-memory storage might be a preferred option. It might be simply enabled by passing :memory: as first parameter, while creating an instance of QdrantDocumentStore.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    ":memory:",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

On disk storage

However, if you prefer to keep the vectors between different runs of your application, it might be better to use on disk storage and pass the path that should be used to persist the data.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    path="/home/qdrant/storage_local",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

Connecting to Qdrant Cloud cluster

If you prefer not to manage your own Qdrant instance, Qdrant Cloud might be a better option.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    "https://YOUR-CLUSTER-URL.aws.cloud.qdrant.io",
    index="Document",
    api_key="<< YOUR QDRANT CLOUD API KEY >>",
    embedding_dim=512,
    recreate_index=True,
)

There is no difference in terms of functionality between local instances and cloud clusters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qdrant_haystack-0.0.5.tar.gz (13.1 kB view details)

Uploaded Source

Built Distribution

qdrant_haystack-0.0.5-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file qdrant_haystack-0.0.5.tar.gz.

File metadata

  • Download URL: qdrant_haystack-0.0.5.tar.gz
  • Upload date:
  • Size: 13.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for qdrant_haystack-0.0.5.tar.gz
Algorithm Hash digest
SHA256 000cc0c41c691528c3f992b9f77e8b1c1512399caa705fb2d5a3dd58638464f8
MD5 336064b8a5be52fefc82c741139a7908
BLAKE2b-256 1c1258698403db5fdd5b7d9b43133687eb605a32c976ef6b38e1071abfbdfa52

See more details on using hashes here.

File details

Details for the file qdrant_haystack-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for qdrant_haystack-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f5ce61224c363f014a842ab87462719782f0887c7d7d898ab7966f6798b06b61
MD5 8832890bb5a23f8b7e52f290aa8b7279
BLAKE2b-256 3de9bb4d3d00bc7deadbc123b641c4113aedda9878dba2e2a7a53465d000e867

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page