Skip to main content

An integration of Qdrant ANN vector database backend with Haystack

Project description

qdrant-haystack

An integration of Qdrant vector database with Haystack by deepset.

The library finally allows using Qdrant as a document store, and provides an in-place replacement for any other vector embeddings store. Thus, you should expect any kind of application to be working smoothly just by changing the provider to QdrantDocumentStore.

Installation

qdrant-haystack might be installed as any other Python library, using pip or poetry:

pip install qdrant-haystack
poetry add qdrant-haystack

Usage

Once installed, you can already start using QdrantDocumentStore as any other store that supports embeddings.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    "localhost",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

The list of parameters accepted by QdrantDocumentStore is complementary to those used in the official Python Qdrant client.

Using local in-memory / disk-persisted mode

Qdrant Python client, from version 1.1.1, supports local in-memory/disk-persisted mode. That's a good choice for any test scenarios and quick experiments in which you do not plan to store lots of vectors. In such a case spinning a Docker container might be even not required.

The local mode was also implemented in qdrant-haystack integration.

In-memory storage

In case you want to have a transient storage, for example in case of automated tests launched during your CI/CD pipeline, using Qdrant Local mode with in-memory storage might be a preferred option. It might be simply enabled by passing :memory: as first parameter, while creating an instance of QdrantDocumentStore.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    ":memory:",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

On disk storage

However, if you prefer to keep the vectors between different runs of your application, it might be better to use on disk storage and pass the path that should be used to persist the data.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    path="/home/qdrant/storage_local",
    index="Document",
    embedding_dim=512,
    recreate_index=True,
    hnsw_config={"m": 16, "ef_construct": 64}  # Optional
)

Connecting to Qdrant Cloud cluster

If you prefer not to manage your own Qdrant instance, Qdrant Cloud might be a better option.

from qdrant_haystack import QdrantDocumentStore

document_store = QdrantDocumentStore(
    "https://YOUR-CLUSTER-URL.aws.cloud.qdrant.io",
    index="Document",
    api_key="<< YOUR QDRANT CLOUD API KEY >>",
    embedding_dim=512,
    recreate_index=True,
)

There is no difference in terms of functionality between local instances and cloud clusters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qdrant_haystack-1.0.7.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

qdrant_haystack-1.0.7-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file qdrant_haystack-1.0.7.tar.gz.

File metadata

  • Download URL: qdrant_haystack-1.0.7.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for qdrant_haystack-1.0.7.tar.gz
Algorithm Hash digest
SHA256 f33a604b9d4c0b39e8ee24945bd5ec84399558bb24c69abe9fbd3b3d749da99a
MD5 65743c9431af74712e5f3193bc3d002c
BLAKE2b-256 85acb13f40a1a9947dc062602deb41abba07ca63aa2c08506623b1f797054026

See more details on using hashes here.

File details

Details for the file qdrant_haystack-1.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for qdrant_haystack-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1e5faec16424b46b8051e42365bb68aab90e8b1c728634b99b6037c9ef8ff3c7
MD5 bf63dfeb99c981d25773319e0782163f
BLAKE2b-256 39be059b2aba1d062930bf8d95e91e8cd741efbd0df53d550f1ccd7f899d9737

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page