Skip to main content

Shared core for provider-agnostic LLM support and configuration mapping for qdrant-loader ecosystem

Project description

QDrant Loader Core

PyPI Python License: GPL v3

Shared core library for the QDrant Loader ecosystem. It provides a provider‑agnostic LLM layer (embeddings and chat), configuration mapping, safe logging, and normalized error handling used by the CLI and MCP Server packages.

🚀 What It Provides

  • Provider‑agnostic LLM facade: OpenAI, Azure OpenAI, OpenAI‑compatible, and Ollama
  • Unified async APIs:
    • EmbeddingsClient.embed(inputs: list[str]) -> list[list[float]]
    • ChatClient.chat(messages: list[dict], **kwargs) -> dict
    • TokenCounter.count(text: str) -> int
  • Typed settings and mapping: LLMSettings.from_global_config(...) supports the new global.llm schema and maps legacy fields with deprecation warnings
  • Structured logging with redaction: LoggingConfig.setup(...) masks secrets and reduces noisy logs
  • Normalized errors: consistent exceptions across providers (TimeoutError, RateLimitedError, InvalidRequestError, AuthError, ServerError)
  • Optional dependencies via extras: openai, ollama

📦 Installation

# Minimal core
pip install qdrant-loader-core

# With OpenAI/Azure OpenAI support
pip install "qdrant-loader-core[openai]"

# With Ollama support
pip install "qdrant-loader-core[ollama]"

# From source (development)
git clone https://github.com/martin-papy/qdrant-loader.git
cd qdrant-loader
pip install -e packages/qdrant-loader-core

⚡ Quick Start

Example using the new global.llm schema:

global:
  llm:
    provider: "openai"            # openai | azure_openai | ollama | openai_compat
    base_url: "https://api.openai.com/v1"
    api_key: "${OPENAI_API_KEY}"
    models:
      embeddings: "text-embedding-3-small"
      chat: "gpt-4o-mini"
import asyncio
from qdrant_loader_core.llm.settings import LLMSettings
from qdrant_loader_core.llm.factory import create_provider

global_config = {
    "llm": {
        "provider": "openai",
        "base_url": "https://api.openai.com/v1",
        "api_key": "${OPENAI_API_KEY}",
        "models": {"embeddings": "text-embedding-3-small", "chat": "gpt-4o-mini"},
    }
}

settings = LLMSettings.from_global_config(global_config)
provider = create_provider(settings)

async def main() -> None:
    vectors = await provider.embeddings().embed(["hello", "world"])  # list[list[float]]
    reply = await provider.chat().chat([
        {"role": "system", "content": "You are helpful."},
        {"role": "user", "content": "Say hi!"},
    ])
    print(len(vectors), reply["text"])  # 2 "Hi!" (example)

asyncio.run(main())

🔌 Supported Providers

  • OpenAI ([openai] extra): Uses the official openai Python SDK. Configure with base_url, api_key, and models.chat/models.embeddings.
  • Azure OpenAI ([openai] extra): Requires api_version. Auto‑detected when the host is *.openai.azure.com or *.cognitiveservices.azure.com. Optional provider_options.azure_endpoint overrides the endpoint.
  • OpenAI‑compatible ([openai] extra): Any endpoint exposing OpenAI‑style /v1 APIs. Set provider: openai_compat (or rely on base_url containing openai).
  • Ollama ([ollama] extra): Works with native /api and OpenAI‑compatible /v1 endpoints. Optional provider_options.native_endpoint: auto | embed | embeddings selects native behavior.

🔧 Configuration Mapping

LLMSettings.from_global_config(...) accepts a parsed dict for global and supports:

  • New schema (recommended): global.llm

    • provider, base_url, api_key, api_version (Azure), headers
    • models: { embeddings, chat }
    • tokenizer
    • request: { timeout_s, max_retries, backoff_s_min, backoff_s_max }
    • rate_limits: { rpm, tpm, concurrency }
    • embeddings: { vector_size }
    • provider_options: provider‑specific opts (e.g., azure_endpoint, native_endpoint)
  • Legacy mapping (deprecated): global.embedding.* and file_conversion.markitdown.llm_model

    • Maps to provider + models (embeddings/chat), emits a deprecation warning
    • Prefer migrating to global.llm for clarity and future features

🧾 Logging

Use the built‑in structured logging with redaction:

from qdrant_loader_core.logging import LoggingConfig

LoggingConfig.setup(level="INFO", format="console", file=None)
logger = LoggingConfig.get_logger(__name__)
logger.info("LLM ready", provider=settings.provider)

Notes

  • Secrets (keys/tokens) are masked in both stdlib and structlog output
  • Noisy third‑party logs are toned down; Qdrant version checks are filtered
  • For MCP integration, set MCP_DISABLE_CONSOLE_LOGGING=true to disable console output

🧰 Error Handling

Catch provider‑normalized exceptions from qdrant_loader_core.llm.errors:

  • TimeoutError — request timed out
  • RateLimitedError — rate limit exceeded
  • InvalidRequestError — bad parameters or unsupported operation
  • AuthError — authentication/authorization failed
  • ServerError — transport/server failures

📚 Documentation

🤝 Contributing

This package is part of the QDrant Loader monorepo. See the main contributing guide.

🆘 Support

📄 License

Licensed under the GNU GPLv3 — see LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qdrant_loader_core-0.7.2.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

qdrant_loader_core-0.7.2-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file qdrant_loader_core-0.7.2.tar.gz.

File metadata

  • Download URL: qdrant_loader_core-0.7.2.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for qdrant_loader_core-0.7.2.tar.gz
Algorithm Hash digest
SHA256 4b5fe99c41c275a3a1cf645872f075f4cc82b544d4991c95edce3b3fb5e63ab1
MD5 0a49096a51f3fea0f16e86b5dde15c50
BLAKE2b-256 3a6aca437e287234b456480beb3def290dc99e5c83c668da4c9c2b50fbc916a6

See more details on using hashes here.

Provenance

The following attestation bundles were made for qdrant_loader_core-0.7.2.tar.gz:

Publisher: publish.yml on martin-papy/qdrant-loader

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file qdrant_loader_core-0.7.2-py3-none-any.whl.

File metadata

File hashes

Hashes for qdrant_loader_core-0.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f49d4a7705620cc758be5ffe07bdd57b8dd9337c10776c7ccd0774d7f909d422
MD5 62407bf50ac82a7637da9524bd5cd4d8
BLAKE2b-256 2a053e4a0111867e2085faaf28ce6dea2887b5548f11de7296f52b2466a403cb

See more details on using hashes here.

Provenance

The following attestation bundles were made for qdrant_loader_core-0.7.2-py3-none-any.whl:

Publisher: publish.yml on martin-papy/qdrant-loader

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page