Performance test generator, part of Quality Gate
Project description
QGate-Perf
Performance test generator, part of Quality Gate solution. Key benefits:
- easy performance testing your python code (key parts - init, start, stop, return)
- measure only specific part of your code
- scalability without limits (e.g. from 1 to 1k executors)
- scalability in level of processes and threads (easy way, how to avoid GIL in python)
- sequences for execution and data bulk
- relation to graph generator
Usage
from qgate_perf.parallel_executor import ParallelExecutor
from qgate_perf.parallel_probe import ParallelProbe
from qgate_perf.run_setup import RunSetup
from qgate_perf.run_return import RunReturn
import time
def prf_GIL_impact(run_return: RunReturn, run_setup: RunSetup):
""" Function for performance testing"""
try:
# INIT - contain executor synchonization, if needed
probe=ParallelProbe(run_setup)
while (True):
# START - probe, only for this specific code part
probe.start()
for r in range(run_setup.bulk_row * run_setup.bulk_col):
time.sleep(0)
# STOP - probe
if probe.stop():
break
# RETURN - data from probe
run_return.probe=probe
except Exception as ex:
# RETURN - error
run_return.probe=ParallelProbe(None, ex)
# Execution setting
generator = ParallelExecutor(prf_GIL_impact,
label="GIL_impact",
detail_output=True,
output_file="prf_gil_impact_01.txt")
setup=RunSetup(duration_second=20,start_delay=0)
generator.run_bulk_executor(bulk_list=[[1, 1]],
executor_list=[[16, 1, '1x thread'], [8, 2, '2x threads'],[4, 4,'4x threads']],
run_setup=setup)
Outputs in text file
############### 2023-05-05 06:30:36.194849 ###############
{"type": "headr", "label": "GIL_impact", "bulk": [1, 1], "available_cpu": 12, "now": "2023-05-05 06:30:36.194849"}
{"type": "core", "plan_executors": 4, "plan_executors_detail": [4, 1], "real_executors": 4, "group": "1x thread", "total_calls": 7590439, "avrg_time": 1.4127372338382197e-06, "std_deviation": 3.699171006877347e-05, "total_call_per_sec": 2831382.8673804617, "endexec": "2023-05-05 06:30:44.544829"}
{"type": "core", "plan_executors": 8, "plan_executors_detail": [8, 1], "real_executors": 8, "group": "1x thread", "total_calls": 11081697, "avrg_time": 1.789265660825848e-06, "std_deviation": 4.164309967620533e-05, "total_call_per_sec": 4471107.994274894, "endexec": "2023-05-05 06:30:52.623666"}
{"type": "core", "plan_executors": 16, "plan_executors_detail": [16, 1], "real_executors": 16, "group": "1x thread", "total_calls": 8677305, "avrg_time": 6.2560950624827455e-06, "std_deviation": 8.629422798757681e-05, "total_call_per_sec": 2557505.8946835063, "endexec": "2023-05-05 06:31:02.875799"}
{"type": "core", "plan_executors": 8, "plan_executors_detail": [4, 2], "real_executors": 8, "group": "2x threads", "total_calls": 2761851, "avrg_time": 1.1906723084757647e-05, "std_deviation": 0.00010741937495211329, "total_call_per_sec": 671889.3135459893, "endexec": "2023-05-05 06:31:10.283786"}
{"type": "core", "plan_executors": 16, "plan_executors_detail": [8, 2], "real_executors": 16, "group": "2x threads", "total_calls": 3605920, "avrg_time": 1.858694254439209e-05, "std_deviation": 0.00013301637613377212, "total_call_per_sec": 860819.3607844017, "endexec": "2023-05-05 06:31:18.740831"}
{"type": "core", "plan_executors": 16, "plan_executors_detail": [4, 4], "real_executors": 16, "group": "4x threads", "total_calls": 1647508, "avrg_time": 4.475957498576462e-05, "std_deviation": 0.00020608402170105327, "total_call_per_sec": 357465.41393855185, "endexec": "2023-05-05 06:31:26.008649"}
############### Duration: 49.9 seconds ###############
Outputs in text file with detail
############### 2023-05-05 07:01:18.571700 ###############
{"type": "headr", "label": "GIL_impact", "bulk": [1, 1], "available_cpu": 12, "now": "2023-05-05 07:01:18.571700"}
{"type": "detail", "processid": 12252, "calls": 1896412, "total": 2.6009109020233154, "avrg": 1.371490426143325e-06, "min": 0.0, "max": 0.0012514591217041016, "st-dev": 3.6488665183545995e-05, "initexec": "2023-05-05 07:01:21.370528", "startexec": "2023-05-05 07:01:21.370528", "endexec": "2023-05-05 07:01:26.371062"}
{"type": "detail", "processid": 8944, "calls": 1855611, "total": 2.5979537963867188, "avrg": 1.4000530264084008e-06, "min": 0.0, "max": 0.001207590103149414, "st-dev": 3.6889275786419565e-05, "initexec": "2023-05-05 07:01:21.466496", "startexec": "2023-05-05 07:01:21.466496", "endexec": "2023-05-05 07:01:26.466551"}
{"type": "detail", "processid": 2108, "calls": 1943549, "total": 2.6283881664276123, "avrg": 1.3523652691172758e-06, "min": 0.0, "max": 0.0012514591217041016, "st-dev": 3.624462003401045e-05, "initexec": "2023-05-05 07:01:21.709203", "startexec": "2023-05-05 07:01:21.709203", "endexec": "2023-05-05 07:01:26.709298"}
{"type": "detail", "processid": 19292, "calls": 1973664, "total": 2.6392557621002197, "avrg": 1.3372366127670262e-06, "min": 0.0, "max": 0.0041027069091796875, "st-dev": 3.620965943471147e-05, "initexec": "2023-05-05 07:01:21.840541", "startexec": "2023-05-05 07:01:21.840541", "endexec": "2023-05-05 07:01:26.841266"}
{"type": "core", "plan_executors": 4, "plan_executors_detail": [4, 1], "real_executors": 4, "group": "1x thread", "total_calls": 7669236, "avrg_time": 1.3652863336090071e-06, "std_deviation": 3.645805510967187e-05, "total_call_per_sec": 2929788.3539391863, "endexec": "2023-05-05 07:01:26.891144"}
...
Graphs generated from qgate-graph based on outputs from qgate-perf
512 executors (128 processes x 4 threads)
32 executors (8 processes x 4 threads)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file qgate_perf-0.2.4-py3-none-any.whl
.
File metadata
- Download URL: qgate_perf-0.2.4-py3-none-any.whl
- Upload date:
- Size: 17.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48faf710e84ec7b74408a531293b4d7d42d184088609a70116d26a49f5c3d83f |
|
MD5 | 14c0b3299af36e1fc47c973b68e4925e |
|
BLAKE2b-256 | d6d2848f7c7147479b4dd5fe0d955ad4627895645a33b51dfb6cd5a844d3ba17 |