Skip to main content

Performance test generator, part of Quality Gate

Project description

PyPI version fury.io

QGate-Perf

Performance test generator, part of Quality Gate solution. Key benefits:

  • easy performance testing your python code (key parts - init, start, stop, return)
  • measure only specific part of your code
  • scalability without limits (e.g. from 1 to 1k executors)
  • scalability in level of processes and threads (easy way, how to avoid GIL in python)
  • sequences for execution and data bulk
  • relation to graph generator

Usage

from qgate_perf.parallel_executor import ParallelExecutor
from qgate_perf.parallel_probe import ParallelProbe
from qgate_perf.run_setup import RunSetup
from qgate_perf.run_return import RunReturn
import time

def prf_GIL_impact(run_return: RunReturn, run_setup: RunSetup):
    """ Function for performance testing"""
    try:
        # INIT - contain executor synchonization, if needed
        probe=ParallelProbe(run_setup)

        while (True):

            # START - probe, only for this specific code part
            probe.start()

            for r in range(run_setup.bulk_row * run_setup.bulk_col):
                time.sleep(0)

            # STOP - probe
            if probe.stop():
                break

        # RETURN - data from probe
        run_return.probe=probe

    except Exception as ex:
        # RETURN - error
        run_return.probe=ParallelProbe(None, ex)

# Execution setting
generator = ParallelExecutor(prf_GIL_impact,
                             label="GIL_impact",
                             detail_output=True,
                             output_file="prf_gil_impact_01.txt")

setup=RunSetup(duration_second=20,start_delay=0)

generator.run_bulk_executor(bulk_list=[[1, 1]],
                            executor_list=[[16, 1, '1x thread'], [8, 2, '2x threads'],[4, 4,'4x threads']],
                            run_setup=setup)

Outputs in text file

############### 2023-05-05 06:30:36.194849 ###############
{"type": "headr", "label": "GIL_impact", "bulk": [1, 1], "available_cpu": 12, "now": "2023-05-05 06:30:36.194849"}
  {"type": "core", "plan_executors": 4, "plan_executors_detail": [4, 1], "real_executors": 4, "group": "1x thread", "total_calls": 7590439, "avrg_time": 1.4127372338382197e-06, "std_deviation": 3.699171006877347e-05, "total_call_per_sec": 2831382.8673804617, "endexec": "2023-05-05 06:30:44.544829"}
  {"type": "core", "plan_executors": 8, "plan_executors_detail": [8, 1], "real_executors": 8, "group": "1x thread", "total_calls": 11081697, "avrg_time": 1.789265660825848e-06, "std_deviation": 4.164309967620533e-05, "total_call_per_sec": 4471107.994274894, "endexec": "2023-05-05 06:30:52.623666"}
  {"type": "core", "plan_executors": 16, "plan_executors_detail": [16, 1], "real_executors": 16, "group": "1x thread", "total_calls": 8677305, "avrg_time": 6.2560950624827455e-06, "std_deviation": 8.629422798757681e-05, "total_call_per_sec": 2557505.8946835063, "endexec": "2023-05-05 06:31:02.875799"}
  {"type": "core", "plan_executors": 8, "plan_executors_detail": [4, 2], "real_executors": 8, "group": "2x threads", "total_calls": 2761851, "avrg_time": 1.1906723084757647e-05, "std_deviation": 0.00010741937495211329, "total_call_per_sec": 671889.3135459893, "endexec": "2023-05-05 06:31:10.283786"}
  {"type": "core", "plan_executors": 16, "plan_executors_detail": [8, 2], "real_executors": 16, "group": "2x threads", "total_calls": 3605920, "avrg_time": 1.858694254439209e-05, "std_deviation": 0.00013301637613377212, "total_call_per_sec": 860819.3607844017, "endexec": "2023-05-05 06:31:18.740831"}
  {"type": "core", "plan_executors": 16, "plan_executors_detail": [4, 4], "real_executors": 16, "group": "4x threads", "total_calls": 1647508, "avrg_time": 4.475957498576462e-05, "std_deviation": 0.00020608402170105327, "total_call_per_sec": 357465.41393855185, "endexec": "2023-05-05 06:31:26.008649"}
############### Duration: 49.9 seconds ###############

Outputs in text file with detail

############### 2023-05-05 07:01:18.571700 ###############
{"type": "headr", "label": "GIL_impact", "bulk": [1, 1], "available_cpu": 12, "now": "2023-05-05 07:01:18.571700"}
     {"type": "detail", "processid": 12252, "calls": 1896412, "total": 2.6009109020233154, "avrg": 1.371490426143325e-06, "min": 0.0, "max": 0.0012514591217041016, "st-dev": 3.6488665183545995e-05, "initexec": "2023-05-05 07:01:21.370528", "startexec": "2023-05-05 07:01:21.370528", "endexec": "2023-05-05 07:01:26.371062"}
     {"type": "detail", "processid": 8944, "calls": 1855611, "total": 2.5979537963867188, "avrg": 1.4000530264084008e-06, "min": 0.0, "max": 0.001207590103149414, "st-dev": 3.6889275786419565e-05, "initexec": "2023-05-05 07:01:21.466496", "startexec": "2023-05-05 07:01:21.466496", "endexec": "2023-05-05 07:01:26.466551"}
     {"type": "detail", "processid": 2108, "calls": 1943549, "total": 2.6283881664276123, "avrg": 1.3523652691172758e-06, "min": 0.0, "max": 0.0012514591217041016, "st-dev": 3.624462003401045e-05, "initexec": "2023-05-05 07:01:21.709203", "startexec": "2023-05-05 07:01:21.709203", "endexec": "2023-05-05 07:01:26.709298"}
     {"type": "detail", "processid": 19292, "calls": 1973664, "total": 2.6392557621002197, "avrg": 1.3372366127670262e-06, "min": 0.0, "max": 0.0041027069091796875, "st-dev": 3.620965943471147e-05, "initexec": "2023-05-05 07:01:21.840541", "startexec": "2023-05-05 07:01:21.840541", "endexec": "2023-05-05 07:01:26.841266"}
  {"type": "core", "plan_executors": 4, "plan_executors_detail": [4, 1], "real_executors": 4, "group": "1x thread", "total_calls": 7669236, "avrg_time": 1.3652863336090071e-06, "std_deviation": 3.645805510967187e-05, "total_call_per_sec": 2929788.3539391863, "endexec": "2023-05-05 07:01:26.891144"}
  ...

Graphs generated from qgate-graph based on outputs from qgate-perf

512 executors (128 processes x 4 threads)

graph graph

32 executors (8 processes x 4 threads)

graph graph

Project details


Release history Release notifications | RSS feed

This version

0.3.7

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

qgate_perf-0.3.7-py3-none-any.whl (18.2 kB view details)

Uploaded Python 3

File details

Details for the file qgate_perf-0.3.7-py3-none-any.whl.

File metadata

  • Download URL: qgate_perf-0.3.7-py3-none-any.whl
  • Upload date:
  • Size: 18.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for qgate_perf-0.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ebdcc5eafdbd635397c7967569d782cf91e7e23b0401612b8e4e79b2c7a7cd32
MD5 2f18dab88f551accef2b834bd09f7fb6
BLAKE2b-256 a6e416a86a24720d78bdeac8630336432a6f7a0535bd57996b1d0d1c8625d61e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page