Skip to main content

Aer - High performance simulators for Qiskit

Project description

Aer - high performance quantum circuit simulation for Qiskit

License Build Tests

Aer is a high performance simulator for quantum circuits written in Qiskit, that includes realistic noise models.

Installation

We encourage installing Aer via the pip tool (a python package manager):

pip install qiskit-aer

Pip will handle all dependencies automatically for us, and you will always install the latest (and well-tested) version.

To install from source, follow the instructions in the contribution guidelines.

Installing GPU support

In order to install and run the GPU supported simulators on Linux, you need CUDA® 11.2 or newer previously installed. CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® web.

If you want to install our GPU supported simulators, you have to install this other package:

pip install qiskit-aer-gpu

The package above is for CUDA&reg 12, so if your system has CUDA® 11 installed, install separate package:

pip install qiskit-aer-gpu-cu11

This will overwrite your current qiskit-aer package installation giving you the same functionality found in the canonical qiskit-aer package, plus the ability to run the GPU supported simulators: statevector, density matrix, and unitary.

Note: This package is only available on x86_64 Linux. For other platforms that have CUDA support, you will have to build from source. You can refer to the contributing guide for instructions on doing this.

Simulating your first Qiskit circuit with Aer

Now that you have Aer installed, you can start simulating quantum circuits using primitives and noise models. Here is a basic example:

$ python
from qiskit import transpile
from qiskit.circuit.library import RealAmplitudes
from qiskit.quantum_info import SparsePauliOp
from qiskit_aer import AerSimulator

sim = AerSimulator()
# --------------------------
# Simulating using estimator
#---------------------------
from qiskit_aer.primitives import EstimatorV2

psi1 = transpile(RealAmplitudes(num_qubits=2, reps=2), sim, optimization_level=0)
psi2 = transpile(RealAmplitudes(num_qubits=2, reps=3), sim, optimization_level=0)

H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)])
H2 = SparsePauliOp.from_list([("IZ", 1)])
H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)])

theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 1, 2, 3, 5, 8, 13]
theta3 = [1, 2, 3, 4, 5, 6]

estimator = EstimatorV2()

# calculate [ [<psi1(theta1)|H1|psi1(theta1)>,
#              <psi1(theta3)|H3|psi1(theta3)>],
#             [<psi2(theta2)|H2|psi2(theta2)>] ]
job = estimator.run(
    [
        (psi1, [H1, H3], [theta1, theta3]),
        (psi2, H2, theta2)
    ],
    precision=0.01
)
result = job.result()
print(f"expectation values : psi1 = {result[0].data.evs}, psi2 = {result[1].data.evs}")

# --------------------------
# Simulating using sampler
# --------------------------
from qiskit_aer.primitives import SamplerV2
from qiskit import QuantumCircuit

# create a Bell circuit
bell = QuantumCircuit(2)
bell.h(0)
bell.cx(0, 1)
bell.measure_all()

# create two parameterized circuits
pqc = RealAmplitudes(num_qubits=2, reps=2)
pqc.measure_all()
pqc = transpile(pqc, sim, optimization_level=0)
pqc2 = RealAmplitudes(num_qubits=2, reps=3)
pqc2.measure_all()
pqc2 = transpile(pqc2, sim, optimization_level=0)

theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 2, 3, 4, 5, 6, 7]

# initialization of the sampler
sampler = SamplerV2()

# collect 128 shots from the Bell circuit
job = sampler.run([bell], shots=128)
job_result = job.result()
print(f"counts for Bell circuit : {job_result[0].data.meas.get_counts()}")
 
# run a sampler job on the parameterized circuits
job2 = sampler.run([(pqc, theta1), (pqc2, theta2)])
job_result = job2.result()
print(f"counts for parameterized circuit : {job_result[0].data.meas.get_counts()}")

# --------------------------------------------------
# Simulating with noise model from actual hardware
# --------------------------------------------------
from qiskit_ibm_runtime import QiskitRuntimeService
provider = QiskitRuntimeService(channel='ibm_quantum', token="set your own token here")
backend = provider.get_backend("ibm_kyoto")

# create sampler from the actual backend
sampler = SamplerV2.from_backend(backend)

# run a sampler job on the parameterized circuits with noise model of the actual hardware
bell_t = transpile(bell, AerSimulator(basis_gates=["ecr", "id", "rz", "sx"]), optimization_level=0)
job3 = sampler.run([bell_t], shots=128)
job_result = job3.result()
print(f"counts for Bell circuit w/noise: {job_result[0].data.meas.get_counts()}")

Contribution Guidelines

If you'd like to contribute to Aer, please take a look at our contribution guidelines. This project adheres to Qiskit's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs. Please use our slack for discussion and simple questions. To join our Slack community use the link. For questions that are more suited for a forum, we use the Qiskit tag in the Stack Exchange.

Next Steps

Now you're set up and ready to check out some of the other examples from the Aer documentation.

Authors and Citation

Aer is the work of many people who contribute to the project at different levels. If you use Qiskit, please cite as per the included BibTeX file.

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

qiskit_aer_gpu_cu11-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

qiskit_aer_gpu_cu11-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

qiskit_aer_gpu_cu11-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

qiskit_aer_gpu_cu11-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

qiskit_aer_gpu_cu11-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file qiskit_aer_gpu_cu11-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qiskit_aer_gpu_cu11-0.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3bff888e279614350e928cf4020c8de681cb9f0b6cfd9988923431d6e55bf191
MD5 61c799715706a066b41bb48e0427ce50
BLAKE2b-256 024ee0a4d8b4528f2d5aa2284e5a8fce92fc26fe35410a11997f942036516276

See more details on using hashes here.

File details

Details for the file qiskit_aer_gpu_cu11-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qiskit_aer_gpu_cu11-0.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 310555bc2342806079ffa85f7203b731cf14d383e8a9fd35994fe9cca3edc949
MD5 54eaccac3036b92cd222b8c6067dfdf2
BLAKE2b-256 f4b4f9264094a5e645306f0653ae5e1c313875ded903508091390a19228abbc3

See more details on using hashes here.

File details

Details for the file qiskit_aer_gpu_cu11-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qiskit_aer_gpu_cu11-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 398857f4ac91148ae02df1c08cecd6484bfa5b944daf81a3ab620c89d9a85d7b
MD5 edd3b5ba921cce6122661a28421adea4
BLAKE2b-256 7d004ff2ce80623bfe940f94ba9932f7345682c71f6e53107c6d2a83bf1584f0

See more details on using hashes here.

File details

Details for the file qiskit_aer_gpu_cu11-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qiskit_aer_gpu_cu11-0.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0209d20fe86c27196d4eaebabfe9abfac3628fa6240279dbc9d72feefc758696
MD5 956ebb5b24e75fd66b2997b10c49e285
BLAKE2b-256 6fc1086801cf7acf1bf21685381faae0898c60990c38aa0d20277217ba654e8c

See more details on using hashes here.

File details

Details for the file qiskit_aer_gpu_cu11-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for qiskit_aer_gpu_cu11-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75cfa391eb2b4a9e1d2941136f2f41b78bec22f51f14a18fd4b13fbd48668de1
MD5 17f804c365da410007b989064b021a69
BLAKE2b-256 df03c11089bd08ca608494f9c86cf0b4a95539fd1f757d34124c16e4a7d6f0b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page