Skip to main content

Qiskit Aer - High performance simulators for Qiskit

Project description

Qiskit Aer

LicenseBuild Status

Qiskit is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.

Qiskit is made up of elements that each work together to enable quantum computing. This element is Aer, which provides high-performance quantum computing simulators with realistic noise models.

Installation

We encourage installing Qiskit via the PIP tool (a python package manager), which installs all Qiskit elements, including this one.

pip install qiskit

PIP will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.

To install from source, follow the instructions in the contribution guidelines.

Installing GPU support

In order to install and run the GPU supported simulators, you need CUDA® 10.1 or newer previously installed. CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® web.

If you want to install our GPU supported simulators, you have to install this other package:

pip install qiskit-aer-gpu

This will overwrite your current qiskit-aer package installation giving you the same functionality found in the canonical qiskit-aer package, plus the ability to run the GPU supported simulators: statevector, density matrix, and unitary.

Simulating your first quantum program with Qiskit Aer

Now that you have Qiskit Aer installed, you can start simulating quantum circuits with noise. Here is a basic example:

$ python
import qiskit
from qiskit import IBMQ
from qiskit.providers.aer import QasmSimulator

# Generate 3-qubit GHZ state
circ = qiskit.QuantumCircuit(3, 3)
circ.h(0)
circ.cx(0, 1)
circ.cx(1, 2)
circ.measure([0, 1, 2], [0, 1 ,2])

# Construct an ideal simulator
sim = QasmSimulator()

# Perform an ideal simulation
result_ideal = qiskit.execute(circ, sim).result()
counts_ideal = result_ideal.get_counts(0)
print('Counts(ideal):', counts_ideal)
# Counts(ideal): {'000': 493, '111': 531}

# Construct a noisy simulator backend from an IBMQ backend
# This simulator backend will be automatically configured
# using the device configuration and noise model 
provider = IBMQ.load_account()
vigo_backend = provider.get_backend('ibmq_vigo')
vigo_sim = QasmSimulator.from_backend(vigo_backend)

# Perform noisy simulation
result_noise = qiskit.execute(circ, vigo_sim).result()
counts_noise = result_noise.get_counts(0)

print('Counts(noise):', counts_noise)
# Counts(noise): {'000': 492, '001': 6, '010': 8, '011': 14, '100': 3, '101': 14, '110': 18, '111': 469}

Contribution Guidelines

If you'd like to contribute to Qiskit, please take a look at our contribution guidelines. This project adheres to Qiskit's code of conduct. By participating, you are expect to uphold to this code.

We use GitHub issues for tracking requests and bugs. Please use our slack for discussion and simple questions. To join our Slack community use the link. For questions that are more suited for a forum we use the Qiskit tag in the Stack Exchange.

Next Steps

Now you're set up and ready to check out some of the other examples from our Qiskit IQX Tutorials or Qiskit Community Tutorials repositories.

Authors and Citation

Qiskit Aer is the work of many people who contribute to the project at different levels. If you use Qiskit, please cite as per the included BibTeX file.

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qiskit-aer-0.7.2.tar.gz (6.4 MB view details)

Uploaded Source

Built Distributions

qiskit_aer-0.7.2-cp38-cp38-win_amd64.whl (24.0 MB view details)

Uploaded CPython 3.8Windows x86-64

qiskit_aer-0.7.2-cp38-cp38-win32.whl (18.7 MB view details)

Uploaded CPython 3.8Windows x86

qiskit_aer-0.7.2-cp38-cp38-manylinux2010_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

qiskit_aer-0.7.2-cp38-cp38-manylinux2010_i686.whl (14.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ i686

qiskit_aer-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

qiskit_aer-0.7.2-cp37-cp37m-win_amd64.whl (24.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

qiskit_aer-0.7.2-cp37-cp37m-win32.whl (18.7 MB view details)

Uploaded CPython 3.7mWindows x86

qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_i686.whl (14.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ i686

qiskit_aer-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

qiskit_aer-0.7.2-cp36-cp36m-win_amd64.whl (24.0 MB view details)

Uploaded CPython 3.6mWindows x86-64

qiskit_aer-0.7.2-cp36-cp36m-win32.whl (18.7 MB view details)

Uploaded CPython 3.6mWindows x86

qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_i686.whl (14.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ i686

qiskit_aer-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file qiskit-aer-0.7.2.tar.gz.

File metadata

  • Download URL: qiskit-aer-0.7.2.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for qiskit-aer-0.7.2.tar.gz
Algorithm Hash digest
SHA256 991d9045034b5e21e463bef06d8f3d6f97a32c047bfd844d9475af28b3dd06a0
MD5 9421577025a988e65cc89dfc5285e4c0
BLAKE2b-256 0e97df41405e41425f4da3395dbf1feb8ecdfcbf7c7817a99c0c69b27e276796

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 24.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for qiskit_aer-0.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3e11a2dc7a6a138002e41fe632078f7b3927318528b025daeb580577e64894f4
MD5 5a2c36a6e646fe355faaa2e52fc4d8ee
BLAKE2b-256 086673b8445c08b1eed62d2475a7a700a340d2dffe8d48c17d1a8d00aedfc995

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for qiskit_aer-0.7.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3c237938a579a5b4bfd4762907d63a071ed8f0925650d8771e54f49a04a3ac8a
MD5 c130acbf5cc3c3fbeb07d00745b230ca
BLAKE2b-256 057eef4c9be7515b1370344d0455891a23a68b14d04bad4a65ee02fdf17ba3be

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f5ea29ead04a899c559989e9f2ea13a75e2994639cdb670f8a143e315ca6cc59
MD5 5eb7d53dc3f01ee7647f029ef9d40776
BLAKE2b-256 f13ad1103c413e0e9bbc33940b03037e98d146f8975b0c3fd14aee8716f7f277

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2acba4850eec6b096c6f4dd5a9c62a19fa5839fcf25d514096204cd600560b5e
MD5 a8d650125a988185336939db2791f1b3
BLAKE2b-256 5ff4e5da20cdc94979dbb414bf5c0fb3832eed58396874a92b8d89807a2c74a2

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22ab62e22eb12cc7a7b7e775463019dd39b5ed755e91a9fbe7b0f5c2efeb599e
MD5 8dff122d450d7a62d9aec530dcd05c46
BLAKE2b-256 479479ab678a26fbe32fee24399b8439d896d12dd6611e128e835b0d94264311

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 24.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for qiskit_aer-0.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ec913ac5106a946023ecbfb3aefb6e9f434df4e00c2a998fbeef560c1669b036
MD5 5e77f0dac5b8dcd8a12278fc67f34459
BLAKE2b-256 8b25bd23922675013845e055e83746270aa4fc3ad6e9bc051025ee7b65563d70

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for qiskit_aer-0.7.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4e57144d0526a190bc2d195fd1e05259aa94bd6cb863d5f6558429bbeb227fe6
MD5 0e99cbf5f9aa3b295d45802d5203ae88
BLAKE2b-256 6e885b560578fc48c6fb227abb02b16ad20ca00bc5884ba1872b7b1a08d5b9e7

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 298994739df8ae4b4fafed2d6298b186ee8cb572fc62f0d317f8a1c21204b74f
MD5 d3a8a22110fa9cb308091cc843a617e1
BLAKE2b-256 a90485e4327931e9e1c629bdda6d2add265d2da87e9fa72a6be859b5d75e8007

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2fee04e74531ef76bc572f87086a309a2daf971ca1e004f929dd4e04861cd2f6
MD5 69291cdae1bc9d9dab41ed28eead2d50
BLAKE2b-256 3c5768e4d44da2062aeb13744392b01f85282ab81b4b584eb4a2568fa8924e6f

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 735263873552a35b50df1201b26d29f23c18aacfa1cb9dcd2a7ba810733a49d6
MD5 e53bd80f7485e05af2d30dd1e9bf9877
BLAKE2b-256 d74f2ba33cd5fd6b89d897f00c268c70dcb3e1e19d60b591f5e05303e776d9c7

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 24.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for qiskit_aer-0.7.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b5309f37a730684cc880506afbd417120c5a355d63e26beb87974b4c6bf864fc
MD5 618bf594d72d24eba5ecd26948ffd93a
BLAKE2b-256 c7ba2cc54cac1450f5b08695e6e8093c551e28e2a5d4698bf394d3285b229877

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for qiskit_aer-0.7.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 bdc0f8b958a122c27ecb653b8bf49793f20b44fa0f9f77e3798044db44e1c0c2
MD5 b91b9c36f6a9c1c00d7c8e777338c18c
BLAKE2b-256 945c7366b198acfcc146bfa924acf558eb90e8a8988600ad42731a09f35ee326

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e1f7e55c330434a68e474586703442aabd9dec4dc849488933208cdfe8eaea4c
MD5 c8e383b8d94aaec241e6b2c11c194e61
BLAKE2b-256 9b5acaa85b889de9aa4250fff68e76ad82fd2916f63b1eb3cced1c5419efe215

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 67de3260b9378f8c2fce27c6e3c5e409cc44b7fdf60b665399ad237a99d36ddc
MD5 32c89c5943450b113e4c197722d92e00
BLAKE2b-256 ceb299f072de9eeb296926e16baaf8414fa2e4aac6f8425a96b9e7003e209c25

See more details on using hashes here.

File details

Details for the file qiskit_aer-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: qiskit_aer-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for qiskit_aer-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f7c19ac7c56f6dd4e76d2c905fc2def03145c3a53868fe9945c043169a5879e
MD5 e71fc26378ba0872539b5d81f3c595da
BLAKE2b-256 864494261011d9cc98bf37844def1cd1546235d544b9a7a62af381b552a8f98d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page