Qiskit Aer - High performance simulators for Qiskit
Project description
Qiskit Aer
Qiskit is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.
Qiskit is made up of elements that each work together to enable quantum computing. This element is Aer, which provides high-performance quantum computing simulators with realistic noise models.
Installation
We encourage installing Qiskit via the PIP tool (a python package manager), which installs all Qiskit elements, including this one.
pip install qiskit
PIP will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.
To install from source, follow the instructions in the contribution guidelines.
Installing GPU support
In order to install and run the GPU supported simulators, you need CUDA® 10.1 or newer previously installed. CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® web.
If you want to install our GPU supported simulators, you have to install this other package:
pip install qiskit-aer-gpu
This will overwrite your current qiskit-aer
package installation giving you
the same functionality found in the canonical qiskit-aer
package, plus the
ability to run the GPU supported simulators: statevector, density matrix, and unitary.
Simulating your first quantum program with Qiskit Aer
Now that you have Qiskit Aer installed, you can start simulating quantum circuits with noise. Here is a basic example:
$ python
import qiskit
from qiskit import IBMQ
from qiskit.providers.aer import QasmSimulator
# Generate 3-qubit GHZ state
circ = qiskit.QuantumCircuit(3, 3)
circ.h(0)
circ.cx(0, 1)
circ.cx(1, 2)
circ.measure([0, 1, 2], [0, 1 ,2])
# Construct an ideal simulator
sim = QasmSimulator()
# Perform an ideal simulation
result_ideal = qiskit.execute(circ, sim).result()
counts_ideal = result_ideal.get_counts(0)
print('Counts(ideal):', counts_ideal)
# Counts(ideal): {'000': 493, '111': 531}
# Construct a noisy simulator backend from an IBMQ backend
# This simulator backend will be automatically configured
# using the device configuration and noise model
provider = IBMQ.load_account()
vigo_backend = provider.get_backend('ibmq_vigo')
vigo_sim = QasmSimulator.from_backend(vigo_backend)
# Perform noisy simulation
result_noise = qiskit.execute(circ, vigo_sim).result()
counts_noise = result_noise.get_counts(0)
print('Counts(noise):', counts_noise)
# Counts(noise): {'000': 492, '001': 6, '010': 8, '011': 14, '100': 3, '101': 14, '110': 18, '111': 469}
Contribution Guidelines
If you'd like to contribute to Qiskit, please take a look at our contribution guidelines. This project adheres to Qiskit's code of conduct. By participating, you are expect to uphold to this code.
We use GitHub issues for tracking requests and bugs. Please use our slack for discussion and simple questions. To join our Slack community use the link. For questions that are more suited for a forum we use the Qiskit tag in the Stack Exchange.
Next Steps
Now you're set up and ready to check out some of the other examples from our Qiskit IQX Tutorials or Qiskit Community Tutorials repositories.
Authors and Citation
Qiskit Aer is the work of many people who contribute to the project at different levels. If you use Qiskit, please cite as per the included BibTeX file.
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for qiskit_aer-0.7.2-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e11a2dc7a6a138002e41fe632078f7b3927318528b025daeb580577e64894f4 |
|
MD5 | 5a2c36a6e646fe355faaa2e52fc4d8ee |
|
BLAKE2b-256 | 086673b8445c08b1eed62d2475a7a700a340d2dffe8d48c17d1a8d00aedfc995 |
Hashes for qiskit_aer-0.7.2-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c237938a579a5b4bfd4762907d63a071ed8f0925650d8771e54f49a04a3ac8a |
|
MD5 | c130acbf5cc3c3fbeb07d00745b230ca |
|
BLAKE2b-256 | 057eef4c9be7515b1370344d0455891a23a68b14d04bad4a65ee02fdf17ba3be |
Hashes for qiskit_aer-0.7.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5ea29ead04a899c559989e9f2ea13a75e2994639cdb670f8a143e315ca6cc59 |
|
MD5 | 5eb7d53dc3f01ee7647f029ef9d40776 |
|
BLAKE2b-256 | f13ad1103c413e0e9bbc33940b03037e98d146f8975b0c3fd14aee8716f7f277 |
Hashes for qiskit_aer-0.7.2-cp38-cp38-manylinux2010_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2acba4850eec6b096c6f4dd5a9c62a19fa5839fcf25d514096204cd600560b5e |
|
MD5 | a8d650125a988185336939db2791f1b3 |
|
BLAKE2b-256 | 5ff4e5da20cdc94979dbb414bf5c0fb3832eed58396874a92b8d89807a2c74a2 |
Hashes for qiskit_aer-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22ab62e22eb12cc7a7b7e775463019dd39b5ed755e91a9fbe7b0f5c2efeb599e |
|
MD5 | 8dff122d450d7a62d9aec530dcd05c46 |
|
BLAKE2b-256 | 479479ab678a26fbe32fee24399b8439d896d12dd6611e128e835b0d94264311 |
Hashes for qiskit_aer-0.7.2-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec913ac5106a946023ecbfb3aefb6e9f434df4e00c2a998fbeef560c1669b036 |
|
MD5 | 5e77f0dac5b8dcd8a12278fc67f34459 |
|
BLAKE2b-256 | 8b25bd23922675013845e055e83746270aa4fc3ad6e9bc051025ee7b65563d70 |
Hashes for qiskit_aer-0.7.2-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e57144d0526a190bc2d195fd1e05259aa94bd6cb863d5f6558429bbeb227fe6 |
|
MD5 | 0e99cbf5f9aa3b295d45802d5203ae88 |
|
BLAKE2b-256 | 6e885b560578fc48c6fb227abb02b16ad20ca00bc5884ba1872b7b1a08d5b9e7 |
Hashes for qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 298994739df8ae4b4fafed2d6298b186ee8cb572fc62f0d317f8a1c21204b74f |
|
MD5 | d3a8a22110fa9cb308091cc843a617e1 |
|
BLAKE2b-256 | a90485e4327931e9e1c629bdda6d2add265d2da87e9fa72a6be859b5d75e8007 |
Hashes for qiskit_aer-0.7.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2fee04e74531ef76bc572f87086a309a2daf971ca1e004f929dd4e04861cd2f6 |
|
MD5 | 69291cdae1bc9d9dab41ed28eead2d50 |
|
BLAKE2b-256 | 3c5768e4d44da2062aeb13744392b01f85282ab81b4b584eb4a2568fa8924e6f |
Hashes for qiskit_aer-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 735263873552a35b50df1201b26d29f23c18aacfa1cb9dcd2a7ba810733a49d6 |
|
MD5 | e53bd80f7485e05af2d30dd1e9bf9877 |
|
BLAKE2b-256 | d74f2ba33cd5fd6b89d897f00c268c70dcb3e1e19d60b591f5e05303e776d9c7 |
Hashes for qiskit_aer-0.7.2-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5309f37a730684cc880506afbd417120c5a355d63e26beb87974b4c6bf864fc |
|
MD5 | 618bf594d72d24eba5ecd26948ffd93a |
|
BLAKE2b-256 | c7ba2cc54cac1450f5b08695e6e8093c551e28e2a5d4698bf394d3285b229877 |
Hashes for qiskit_aer-0.7.2-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bdc0f8b958a122c27ecb653b8bf49793f20b44fa0f9f77e3798044db44e1c0c2 |
|
MD5 | b91b9c36f6a9c1c00d7c8e777338c18c |
|
BLAKE2b-256 | 945c7366b198acfcc146bfa924acf558eb90e8a8988600ad42731a09f35ee326 |
Hashes for qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1f7e55c330434a68e474586703442aabd9dec4dc849488933208cdfe8eaea4c |
|
MD5 | c8e383b8d94aaec241e6b2c11c194e61 |
|
BLAKE2b-256 | 9b5acaa85b889de9aa4250fff68e76ad82fd2916f63b1eb3cced1c5419efe215 |
Hashes for qiskit_aer-0.7.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67de3260b9378f8c2fce27c6e3c5e409cc44b7fdf60b665399ad237a99d36ddc |
|
MD5 | 32c89c5943450b113e4c197722d92e00 |
|
BLAKE2b-256 | ceb299f072de9eeb296926e16baaf8414fa2e4aac6f8425a96b9e7003e209c25 |
Hashes for qiskit_aer-0.7.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f7c19ac7c56f6dd4e76d2c905fc2def03145c3a53868fe9945c043169a5879e |
|
MD5 | e71fc26378ba0872539b5d81f3c595da |
|
BLAKE2b-256 | 864494261011d9cc98bf37844def1cd1546235d544b9a7a62af381b552a8f98d |