Skip to main content

Qiskit-Torch-Module: Fast Prototyping of Quantum Neural Networks

Project description

Qiskit-Torch-Module

This repo contains the code for the qiskit-torch-module introduced in "Qiskit-Torch-Module: Fast Prototyping of Quantum Neural Networks", N. Meyer et al. (2024).

Setup and Installation

The library requires an installation of python 3.12, and following libraries:

  • qiskit~=1.0.0, backward compatible up to qiskit v0.44.0
  • qiskit-algorithms~=0.3.0
  • torch~=2.2.1
  • threadpoolctl~=3.3.0

We recommend setting up a conda environment:

conda create --name ENV_NAME python=3.12
conda activate ENV_NAME

The package qiskit-torch-module can be installed locally via:

pip install qiskit-torch-module

Usage and Further Information

For further usage details and examples please refer to the repository https://github.com/nicomeyer96/qiskit-torch-module

Acknowledgements

The backbone of our implementation is the qiskit software framework: https://github.com/Qiskit

Furthermore, we git inspired by qiskit-machine-learning: https://github.com/qiskit-community/qiskit-machine-learning

Citation

If you use the qiskit-torch-module or results from the paper, please cite "Qiskit-Torch-Module: Fast Prototyping of Quantum Neural Networks", N. Meyer et al. (2024).

Version History

Initial release (v1.0): April 2024

License

Apache 2.0 License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qiskit-torch-module-1.0.1.tar.gz (29.3 kB view details)

Uploaded Source

Built Distribution

qiskit_torch_module-1.0.1-py3-none-any.whl (41.0 kB view details)

Uploaded Python 3

File details

Details for the file qiskit-torch-module-1.0.1.tar.gz.

File metadata

  • Download URL: qiskit-torch-module-1.0.1.tar.gz
  • Upload date:
  • Size: 29.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for qiskit-torch-module-1.0.1.tar.gz
Algorithm Hash digest
SHA256 2068a3d7365da8ebb94edd09277d9b40394ba2a52cf1ddb71485dee2d22505ce
MD5 7860f244afc8821c675223d6226f9a95
BLAKE2b-256 c4b6eb06befd2feb1b9f8ca6d06446300e599c6465d85c9b42f96ebcd9477d48

See more details on using hashes here.

File details

Details for the file qiskit_torch_module-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for qiskit_torch_module-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c127f22d5919a013263b19d4854144439f45aa113618a16a0e3862af32e00f88
MD5 5429b8ea2421124b506c4a58ad3d89bd
BLAKE2b-256 4915cd4369bb9bdae4c0e3f5a5fa18a9b073209e1a94b774c1778d03c56bb152

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page