Skip to main content

Script for using the QLever SPARQL engine.

Project description

QLever

QLever is a very fast SPARQL engine, much faster than most existing engines. It can handle graphs with more than hundred billion triples on a single machine with moderate resources. See https://qlever.cs.uni-freiburg.de for more information and many public SPARQL endpoints that use QLever

This project provides a Python script that can control everything that QLever does, in particular, creating SPARQL endpoints for arbitrary RDF datasets. It is supposed to be very easy to use and self-explanatory as you use it. In particular, the tool provides context-sensitive autocompletion of all its commands and options. If you use a container system (like Docker or Podman), you don't even have to download any QLever code, but the script will download the required image for you.

NOTE: There has been a major update on 24.03.2024, which changed some of the Qleverfile variables and command-line options (all for the better, of course). If you encounter any problems, please contact us by opening an issue on https://github.com/ad-freiburg/qlever-control/issues.

Installation

Simply do pip install qlever and make sure that the directory where pip installs the package is in your PATH. Typically, pip will warn you when that is not the case and tell you what to do.

Usage

Create an empty directory, with a name corresponding to the dataset you want to work with. For the following example, take olympics. Go to that directory and do the following. After the first call, qlever will tell you how to activate autocompletion for all its commands and options (it's very easy, but pip cannot do that automatically).

qlever setup-config olympics   # Get Qleverfile (config file) for this dataset
qlever get-data                # Download the dataset
qlever index                   # Build index data structures for this dataset
qlever start                   # Start a QLever server using that index
qlever example-queries         # Launch some example queries
qlever ui                      # Launch the QLever UI

This will create a SPARQL endpoint for the 120 Years of Olympics dataset. It is a great dataset for getting started because it is small, but not trivial (around 2 million triples), and the downloading and indexing should only take a few seconds.

Each command will also show you the command line it uses. That way you can learn, on the side, how QLever works internally. If you just want to know the command line for a particular command, without executing it, you can append --show like this:

qlever index --show

There are many more commands and options, see qlever --help for general help, qlever <command> --help for help on a specific command, or just the autocompletion.

Use with your own dataset

To use QLever with your own dataset, you should also write a Qleverfile, like in the example above. The easiest way to write a Qleverfile is to get one of the existing ones (using qlever setup-config ... as explained above) and then change it according to your needs (the variable names should be self-explanatory). Pick one for a dataset that is similar to yours and when in doubt, pick olympics.

For developers

The (Python) code for the script is in the *.py files in src/qlever. The preconfigured Qleverfiles are in src/qlever/Qleverfiles.

If you want to make changes to the script, or add new commands, do as follows:

git clone https://github.com/ad-freiburg/qlever-control
cd qlever-control
pip install -e .

Then you can use qlever just as if you had installed it via pip install qlever. Note that you don't have to rerun pip install -e . when you modify any of the *.py files and not even when you add new commands in src/qlever/commands. The exceutable created by pip simply links and refers to the files in your working copy.

If you have bug fixes or new useful features or commands, please open a pull request. If you have questions or suggestions, please open an issue.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

qlever-0.5.9-py3-none-any.whl (87.2 kB view details)

Uploaded Python 3

File details

Details for the file qlever-0.5.9-py3-none-any.whl.

File metadata

  • Download URL: qlever-0.5.9-py3-none-any.whl
  • Upload date:
  • Size: 87.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.12.7

File hashes

Hashes for qlever-0.5.9-py3-none-any.whl
Algorithm Hash digest
SHA256 b16069c12920b289d337aa3fdc4646db61b9c16c0adb9fa5ad853b5fc9fe1865
MD5 2cd7d08a00a4b894d6cfb44524f3bc45
BLAKE2b-256 3dc8d0fa5ff8e280a0bf734501eac05c375b43425a60dd98ca86311184e350cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page