Skip to main content

Quantum Machine Learning

Project description

QML: A Python Toolkit for Quantum Machine Learning

|Build Status| |doi| |doi|

QML is a Python2/3-compatible toolkit for representation learning of
properties of molecules and solids.

Current list of contributors:

- Anders S. Christensen (University of Basel)
- Felix A. Faber (University of Basel)
- Bing Huang (University of Basel)
- Lars A. Bratholm (University of Copenhagen)
- Alexandre Tkatchenko (University of Luxembourg)
- Klaus-Robert Muller (Technische Universitat Berlin/Korea University)
- O. Anatole von Lilienfeld (University of Basel)

1) Citing QML:

Until the preprint is available from arXiv, please cite this GitHub
repository as:


AS Christensen, LA Bratholm, FA Faber, B Huang, A Tkatchenko, KR Muller, OA von Lilienfeld (2017) "QML: A Python Toolkit for Quantum Machine Learning"

2) Get help:

Documentation and installation instruction is found at:

3) License:

QML is freely available under the terms of the MIT license.

.. |Build Status| image::
.. |doi| image::
.. |doi| image::

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for qml, version
Filename, size File type Python version Upload date Hashes
Filename, size qml- (41.5 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page