Skip to main content

Differentiable QP solver in JAX.

Project description

qpax

Differentiable QP solver in JAX.

Paper

This package can be used for solving convex quadratic programs of the following form:

$$ \begin{align*} \underset{x}{\text{minimize}} & \quad \frac{1}{2}x^TQx + q^Tx \ \text{subject to} & \quad Ax = b, \ & \quad Gx \leq h \end{align*} $$

where $Q \succeq 0$. This solver can be combined with JAX's jit and vmap functionality, as well as differentiated with reverse-mode grad.

The QP is solved with a primal-dual interior point algorithm detailed in cvxgen, with the solution to the linear systems computed with reduction techniques from cvxopt. At an approximate primal-dual solution, the the primal variable $x$ is differentiated with respect to the problem parameters using the implicit function theorem as shown in optnet, and their pytorch-based qp solver qpth.

Installation

To install directly from github using pip:

$ pip install qpax

Alternatively, to install from source in editable mode:

$ pip install -e .

Usage

Solving a QP

We can solve QPs with qpax in a way that plays nice with JAX's jit and vmap:

import qpax

# solve QP (this can be combined with jit or vmap)
x, s, z, y, converged, iters = qpax.solve_qp(Q, q, A, b, G, h)

Solving a batch of QP's

Here let's solve a batch of nonnegative least squares problems as QPs. This outlines two bits of functionality from qpax, first is the ability to solve QPs without any equality constraints, and second is the ability to vmap over a batch of QPs.

import numpy as np
import jax 
import jax.numpy as jnp 
from jax import jit, grad, vmap  
import qpax 
import timeit

"""
solve batched non-negative least squares (nnls) problems
 
min_x    |Fx - g|^2 
st        x >= 0 
"""

n = 5   # size of x 
m = 10  # rows in F 

# create data for N_qps random nnls problems  
N_qps = 10000 
Fs = jnp.array(np.random.randn(N_qps, m, n))
gs = jnp.array(np.random.randn(N_qps, m))

@jit
def form_qp(F, g):
  # convert the least squares to qp form 
  n = F.shape[1]
  Q = F.T @ F 
  q = -F.T @ g 
  G = -jnp.eye(n)
  h = jnp.zeros(n)
  A = jnp.zeros((0, n))
  b = jnp.zeros(0)
  return Q, q, A, b, G, h

# create the QPs in a batched fashion 
Qs, qs, As, bs, Gs, hs = vmap(form_qp, in_axes = (0, 0))(Fs, gs)

# create function for solving a batch of QPs 
batch_qp = jit(vmap(qpax.solve_qp_primal, in_axes = (0, 0, 0, 0, 0, 0)))

xs = batch_qp(Qs, qs, As, bs, Gs, hs)

Differentiating a QP

Alternatively, if we are only looking to use the primal variable x, we can use solve_qp_primal which enables automatic differenation:

import jax 
import jax.numpy as jnp 
import qpax 

def loss(Q, q, A, b, G, h):
    x = qpax.solve_qp_primal(Q, q, A, b, G, h) 
    x_bar = jnp.ones(len(q))
    return jnp.dot(x - x_bar, x - x_bar)
  
# gradient of loss function   
loss_grad = jax.grad(loss, argnums = (0, 1, 2, 3, 4, 5))

# compatible with jit 
loss_grad_jit = jax.jit(loss_grad)

# calculate derivatives 
derivs = loss_grad_jit(Q, q, A, b, G, h)
dl_dQ, dl_dq, dl_dA, dl_db, dl_dG, dl_dh = derivs 

Citation

Paper

@misc{tracy2024differentiability,
    title={On the Differentiability of the Primal-Dual Interior-Point Method},
    author={Kevin Tracy and Zachary Manchester},
    year={2024},
    eprint={2406.11749},
    archivePrefix={arXiv},
    primaryClass={math.OC}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

qpax-0.0.9-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file qpax-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: qpax-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for qpax-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 55d24b0ac30c95984a14f218ebdacddb434a94ea88eceb95a11f94e91fd0ce30
MD5 c763c9ba19ed235b1b16638031994f75
BLAKE2b-256 4caa61e68bfbfdc7cfbe9a9760637d4a914188b85277cfa0208aa69b1c8a7b2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page