A quantum circuit profiling tool.
Project description
qprof stands for quantum profiler and aims at providing a unique tool to profile quantum circuits.
For the moment, qprof is able to understand quantum circuits generated with qiskit and myQLM and can generate profiling results only in a gprof-compatible format.
Installation
qprof being a Python module, it is installable with pip.
From Gitlab
git clone https://gitlab.com/qcomputing/qprof/qprof.git
pip install qprof/
From PyPi
qprof is now available on PyPi! To download and install the last version, just type
pip install qprof
Plugins for library support are not installed by default in order to avoid pulling silently huge dependencies like qiskit in your project. In order to install the plugins you can either do it afterwards with pip:
pip install qprof_qiskit # other libraries are supported
or use the appropriate target when installing qprof:
pip install qprof[qiskit]
pip install qprof[myqlm]
pip install qprof[all_plugins]
For developers
Developers might want to install qprof as an editable project. To do so you need to clone the git repository and install the library in editable mode with the -e option:
git clone https://gitlab.com/qcomputing/qprof/qprof.git
pip install -e qprof/
Note that the dependencies will not be installed in editable mode. If you want all the qprof stack in editable mode, you need to clone and install everything “by hand”:
git clone https://gitlab.com/qcomputing/qprof/qprof.git
git clone https://gitlab.com/qcomputing/qprof/qprof_interfaces.git
# Plugins?
# git clone https://gitlab.com/qcomputing/qprof/qprof_qiskit.git
pip install -e qprof_interfaces/
pip install -e qprof/
# Plugins?
# pip install -e qprof_qiskit/
Usage
Plugin organisation
The qprof library is organised as follow:
A main qprof library containing all the code related to computing routine execution time, call graph, exporting, …
A qprof_interfaces plugin providing interfaces for the data structures used by qprof to communicate with the plugins.
Several qprof_XXX libraries that are used to adapt a library XXX to qprof by implementing the interfaces of qprof_interfaces.
Plugins are automatically discovered the first time qprof.frameworks is imported and are arranged in a dictionary-like data-structure with the following structure:
frameworks = {
"interfaces": <module 'qprof_interfaces' from '[path]'>, # always present
"plugin1": <module 'qprof_plugin1' from '[path]'>,
# ...
"pluginN": <module 'qprof_pluginN' from '[path]'>,
}
Plugins are lazy-imported, meaning that the plugin module is imported at the first access to the dictionary key.
Profiling
The profiling is performed with the qprof.profile function.
The qprof.profile function needs a quantum routine implemented with one of the supported frameworks along with the “base” gate times, provided as a dictionary, and an exporter, given either as a string or as an instance of BaseExporter.
Example of profiling:
# Import the qprof tools
from qprof import profile
# Import the framework tools to generate a quantum routine
from qiskit.aqua.algorithms import Grover
from qiskit.aqua.components.oracles import LogicalExpressionOracle
# Generate the routine to benchmark.
input_3sat = """
c example DIMACS-CNF 3-SAT
p cnf 3 5
-1 -2 -3 0
1 -2 3 0
1 2 -3 0
1 -2 -3 0
-1 2 3 0
"""
oracle = LogicalExpressionOracle(input_3sat)
grover = Grover(oracle)
circuit = grover.construct_circuit()
# Hard-coded gate times retrieved by hand
gate_times = {"U1": 0, "U2": 89, "U3": 178, "CX": 930, "BARRIER": 0}
# Profile the resulting quantum routine and use the "gprof" exporter
qprof_out = profile(circuit, gate_times, "gprof")
# Print to stdout the analysis report
print(qprof_out)
Full profiling example
Requirements for the example
You should have the dot tool installed on your machine, along with the gprof2dot tool that can be installed with pip install gprof2dot.
Profile the code
Let save the code of the previous section in a file profile.py.
You can generate the following graph with the command
python3 profile.py | gprof2dot | dot -Tpng -o profiling_result.png
Limitations
qprof is not able to analyse recursive routine calls yet. If your quantum circuit contains calls to recursive routines, expect the unexpected.
Troubleshooting
“Unknown” routines shows up in reports
If “Unknown” routines are showing up in the reports, check that you named correctly all the routines you defined.
If the problem is still present, open an issue.
Reported times using gprof output format are false
The gprof output format has a very limited precision of 10 milli-seconds when dealing with timings. This means that routines running in less than 5 milli-seconds will, due to rounding error, appear as taking 0 milli-seconds.
In order to circumvent this issue, the qprof.exporters.GprofExporter takes an optional parameter default_time in its constructor. This default_time will be used to scale all the execution times such that the longest routine will take exactly default_time seconds on the report.
By default, the value of default_time is 10 seconds. In order to change it you need to instantiate the exporter yourself:
from qprof import profile
from qprof.exporters import GprofExporter
routine = # ...
gate_times = # ...
exporter = GprofExporter(default_time=100) # 100 seconds for default_time
result = profile(routine, gate_times, exporter)
Note that giving None to default_time will disable the execution time scaling.
Who is using qprof?
Here is a list of projects using qprof.
If you used qprof in your project and would like to appear in this list, please let me know (open an issue, send me a mail, anything you want).
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file qprof-1.4.0.tar.gz
.
File metadata
- Download URL: qprof-1.4.0.tar.gz
- Upload date:
- Size: 20.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e81307fddffc8337ea4483a660f16a8d2fe4a03fd7bf245bcc1d030d3224941 |
|
MD5 | 41df85f2a40d6736f1d9f1652bdea149 |
|
BLAKE2b-256 | f9846bacf60dfb6637681225f2a8f8d1bd0b2c43cbb22296d9f08caa36e1dc66 |
File details
Details for the file qprof-1.4.0-py3-none-any.whl
.
File metadata
- Download URL: qprof-1.4.0-py3-none-any.whl
- Upload date:
- Size: 34.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 942529ef3cce7cd018a375272d393d5de7ef3a18dc2458d3f5d29c27d7c33812 |
|
MD5 | 94df36db6e4c9e0e37c16dabbcf6f8fa |
|
BLAKE2b-256 | 9f648508eb2cb1c99cc15fa3021d9d3de7308db4dfd09306dc1d70681fa1f07d |